. Let (xn)neN be a sequence in R. For each n in N, let X1 +x2 + +Xn Yn Show that if (xm)nɛN converges to x, then (yn)neN converges to x. [Hint: Write x1 +x2 + · ··+Xn nx Yn -x = (x- Oux) +.+ (x-Ix) (xno+1 - x) + + (xn – x) n and, given ɛ > 0 and suitably choosing no, |x1 - x++xno - x| п - по E. ... lyn – x| < Now take the limit superior of both sides of this inequality.] 5. Refer to Exercise 5. Show that there are nonconvergent sequences Xn)neN for which (yn)neN Converges. [Hint: Consider (0, 1,0, 1, 0, 1, ...).]
. Let (xn)neN be a sequence in R. For each n in N, let X1 +x2 + +Xn Yn Show that if (xm)nɛN converges to x, then (yn)neN converges to x. [Hint: Write x1 +x2 + · ··+Xn nx Yn -x = (x- Oux) +.+ (x-Ix) (xno+1 - x) + + (xn – x) n and, given ɛ > 0 and suitably choosing no, |x1 - x++xno - x| п - по E. ... lyn – x| < Now take the limit superior of both sides of this inequality.] 5. Refer to Exercise 5. Show that there are nonconvergent sequences Xn)neN for which (yn)neN Converges. [Hint: Consider (0, 1,0, 1, 0, 1, ...).]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
100%
QUESTIONS 5 AND 6 PLEASE
QUESTION 6 RELIES ON QUESTION 5 TO GET THE ANSWER
![5. Let (xn)neN be a sequence in R. For each n in N, let
x1 +x2 + .+ Xn
...
Yn =
n
Show that if (xn)neN converges to x, then (yn)neN converges to x. [Hint:
Write
x1 +x2+··+ Xn
nx
Yn - x =
(xno+1 - x) + + (xn - x)
(x- Oux) + + (x-Ix)
...
|
n
and, given ɛ > 0 and suitably choosing no,
|x1 - x++ |Xno-x
п - по
E.
..
lyn – x| <
Now take the limit superior of both sides of this inequality.]
6. Refer to Exercise 5. Show that there are nonconvergent sequences (Xn)neN
for which (y,)neN converges. [Hint: Consider (0, 1, 0, 1, 0, 1, ...).]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd95b1c5e-3673-40a0-a87b-179a3e73672c%2F5ac2cb0d-08c8-4c49-9eb7-50549a5b9514%2Flbq1e9_processed.png&w=3840&q=75)
Transcribed Image Text:5. Let (xn)neN be a sequence in R. For each n in N, let
x1 +x2 + .+ Xn
...
Yn =
n
Show that if (xn)neN converges to x, then (yn)neN converges to x. [Hint:
Write
x1 +x2+··+ Xn
nx
Yn - x =
(xno+1 - x) + + (xn - x)
(x- Oux) + + (x-Ix)
...
|
n
and, given ɛ > 0 and suitably choosing no,
|x1 - x++ |Xno-x
п - по
E.
..
lyn – x| <
Now take the limit superior of both sides of this inequality.]
6. Refer to Exercise 5. Show that there are nonconvergent sequences (Xn)neN
for which (y,)neN converges. [Hint: Consider (0, 1, 0, 1, 0, 1, ...).]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)