. Homogenous Functions: A function F(x1,x2,..., tn) is homogenous of degree k if F(A¤1, Ax2,..., Aan) = X*F(x1, x2,..., Tn) for any A> 0. Prove that if F is homogenous of degree 1, then F(x1, x2,... , Tn) =F(*1,2,..., Tn) · ti

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Question in attached image

5. Homogenous Functions: A function F(r1, x2,..., xn) is homogenous of degree k if
F(Ax1, Ar2,..., Aæn) = X*F(x1, x2,..., an)
for any ) > 0. Prove that if F is homogenous of degree 1, then
F(x1, 02,..., Tn) =
, In) =F:(x1, x2,..., Tn) · Ti
i=1
Transcribed Image Text:5. Homogenous Functions: A function F(r1, x2,..., xn) is homogenous of degree k if F(Ax1, Ar2,..., Aæn) = X*F(x1, x2,..., an) for any ) > 0. Prove that if F is homogenous of degree 1, then F(x1, 02,..., Tn) = , In) =F:(x1, x2,..., Tn) · Ti i=1
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,