-. Determine the values of a for which the system x + 2y3z = 4 3x = y + 5z = 2 4x + y + (a²-14)z = a + 2 has no solutions, exactly one solution, or infinitely many solutions.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine the values of \( a \) for which the system

\[
\begin{align*}
x + 2y - 3z &= 4 \\
3x - y + 5z &= 2 \\
4x + y + (a^2 - 14)z &= a + 2
\end{align*}
\]

has no solutions, exactly one solution, or infinitely many solutions.
Transcribed Image Text:Determine the values of \( a \) for which the system \[ \begin{align*} x + 2y - 3z &= 4 \\ 3x - y + 5z &= 2 \\ 4x + y + (a^2 - 14)z &= a + 2 \end{align*} \] has no solutions, exactly one solution, or infinitely many solutions.
Expert Solution
Step 1l

The given system is , 

          x+2y -3 z= 43x-y+5z   = 24x+y+a2-14z=a+2

rewrite the given system in the form AX=b ; where  A is a coefficient matrix of order n×nX is an  n×1 vector and  bis an  n×1 vector .

=>    1     2-33 -1   54     1   a2-14xyz=42a+2

And the augmented matrix of the system AX=b  is    A    b  .

Then the augment matrix of the given system is , 

=>     1     2-343 -1   524     1 a2-14  (a+2)

The given  system has  3  unknown variables.

 

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,