Week 1 Final Answers

xlsx

School

York University *

*We aren’t endorsed by this school

Course

2320

Subject

Statistics

Date

Feb 20, 2024

Type

xlsx

Pages

11

Uploaded by AmbassadorWillpower12930

Report
Employee ID Time (in seconds) Gender Shift Benefits? Exercise 2.23: 1 271 1 3 3 98.91207 a) Find the mean time 2 262 1 1 3 0.893884 Mean time for a sample of 110 em 3 262 1 1 4 0.893884 = SUM(B2:B111)/110 4 252 1 1 5 81.98479 261.05 5 263 2 2 5 3.784793 6 263 2 2 5 3.784793 7 288 1 1 3 726.0575 b) Find the variance and standard 8 263 2 1 4 3.784793 = VAR.P(B2:B111) 9 263 1 2 1 3.784793 303.6516 10 263 1 3 5 3.784793 11 236 2 3 5 627.7302 Standard Deviation = Variance^1 12 237 2 1 4 578.6212 = Squared Root of Variance = 303 13 288 2 1 4 726.0575 17.4256 14 242 2 1 1 363.0757 15 242 1 2 1 363.0757 c) Find the coefficient of variation 16 244 1 2 1 290.8575 CV = (standard deviation) / mean 17 245 2 2 5 257.7484 6.68% 18 274 2 1 5 167.5848 19 246 1 1 4 226.6393 20 247 1 1 4 197.5302 21 294 1 3 5 1085.403 22 247 1 3 5 197.5302 23 247 2 3 3 197.5302 24 248 2 3 5 170.4212 25 288 1 1 5 726.0575 26 249 2 1 4 145.3121 27 251 2 1 4 101.0939 28 252 2 1 4 81.98479 29 294 1 2 5 1085.403 30 252 1 2 4 81.98479 31 252 2 1 5 81.98479 32 282 1 1 5 438.7121 33 252 1 3 2 81.98479 34 263 1 3 5 3.784793 35 252 2 1 5 81.98479 36 252 2 1 5 81.98479 37 269 2 1 5 63.13025 38 252 2 3 4 81.98479 39 252 2 3 4 81.98479 40 269 1 1 5 63.13025 41 254 1 1 5 49.76661 42 224 2 1 3 1373.039 43 264 2 3 3 8.675702 44 255 2 3 4 36.65752
45 226 1 1 5 1228.821 46 256 1 1 5 25.54843 47 256 1 3 3 25.54843 48 256 1 3 3 25.54843 49 231 1 2 5 903.2757 50 261 2 2 4 0.002975 51 263 2 3 4 3.784793 52 263 2 1 5 3.784793 53 263 1 1 5 3.784793 54 294 2 2 5 1085.403 55 263 1 1 5 3.784793 56 263 2 2 5 3.784793 57 264 1 1 5 8.675702 58 254 2 1 5 49.76661 59 265 2 3 5 15.56661 60 266 2 3 5 24.45752 61 266 1 3 5 24.45752 62 267 1 1 5 35.34843 63 247 1 1 5 197.5302 64 268 2 1 5 48.23934 65 269 1 1 4 63.13025 66 252 2 2 4 81.98479 67 252 2 2 5 81.98479 68 269 2 2 3 63.13025 69 269 1 2 5 63.13025 70 269 1 2 5 63.13025 71 222 1 1 5 1525.258 72 254 1 1 5 49.76661 73 225 2 3 5 1299.93 74 255 2 3 4 36.65752 75 227 2 3 4 1159.712 76 261 2 3 4 0.002975 77 232 1 1 5 844.1666 78 234 1 3 4 731.9484 79 235 1 2 5 678.8393 80 236 2 2 5 627.7302 81 262 2 2 4 0.893884 82 271 1 2 4 98.91207 83 281 2 3 4 397.8212 84 272 1 3 5 119.803 85 273 2 1 4 142.6939 86 245 2 1 5 257.7484 87 275 1 2 5 194.4757 88 285 1 2 4 573.3848 89 275 1 3 4 194.4757
90 276 2 3 5 223.3666 91 278 2 3 5 287.1484 92 278 2 3 3 287.1484 93 279 1 3 5 322.0393 94 271 1 3 5 98.91207 95 281 1 1 5 397.8212 96 252 1 3 5 81.98479 97 284 2 3 4 526.4939 98 275 2 3 4 194.4757 99 288 2 3 5 726.0575 100 248 2 2 5 170.4212 101 288 2 2 5 726.0575 102 263 1 2 5 3.784793 103 238 1 1 4 531.5121 104 291 1 1 4 896.7302 105 267 2 3 4 35.34843 106 294 2 3 5 1085.403 107 252 1 2 5 81.98479 108 263 1 2 5 3.784793 109 294 2 2 5 1085.403 110 299 2 3 5 1439.858
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
mployees (n = 110): d deviation 1/2 3.6516 ^ (1/2) n n) * 100%
GPA Endpoints Mean 3.14154 2.12 2.245 Standard Error 0.029144 2.16 2.495 Median 3.31 2.18 2.745 Mode 3.42 2.19 2.995 Standard Deviation 0.364006 2.22 3.245 Sample Variance 0.132501 2.25 3.495 Kurtosis 0.609585 2.3 3.745 Skewness -1.1685 2.31 3.995 Range 1.73 2.33 Minimum 2.12 2.45 Maximum 3.85 2.46 Sum 490.02 2.51 Count 156 2.51 2.53 2.53 2.54 2.55 2.55 2.55 2.55 2.56 2.56 2.58 2.62 2.65 2.78 2.78 2.79 2.82 2.87 2.88 2.88 2.88 2.88 2.88 2.9 2.91 2.92 2.98 2.99 3.01 3.05 3.06 3.07
3.08 3.1 3.1 3.1 3.14 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.2 3.21 3.21 3.21 3.22 3.24 3.24 3.24 3.25 3.26 3.28 3.29 3.29 3.29 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.32 3.32 3.32 3.32
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
3.32 3.33 3.33 3.33 3.33 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.35 3.35 3.35 3.35 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.39 3.39 3.39 3.4 3.4 3.4 3.4 3.4 3.4 3.42
3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.65 3.67 3.7 3.71 3.72 3.85
Exercise 2.9 a) Compute the first and third qurtiles Q1 = the value located in the 0.25(n + 1)th ordered position Q1 = the value located in the 0.25(156 + 1)th ordered position Q1 = the value located in the 39.25th ordered position Q1 = 2.98 + 0.25(2.98-2.99) Q1 = 2.9825 Q3 = the value located in the 0.75(n + 1)th ordered position Q3 = the value located in the 0.75(156 + 1)th ordered position Q3 = the value located in the 117.75th ordered position Q3 = 3.37 + 0.75(3.37 - 3.37) Q3 = 3.37 b) Calculate the 30th percentile 30th percentile = value located in the 0.30(n + 1)th ordered position 30th percentile = value located in the 0.30(156 + 1)th ordered position 30th percentile = value located in the 47.1th ordered position 30th percentile = 3.10 + 0.1(3.10-3.10) 30th percentile = 3.10 c) Calculate the 80th percentile 80th percentile = value located in the 0.80(n + 1)th ordered position 80th percentile = value located in the 0.80(156 + 1)th ordered position 80th percentile = value located in the 125.6th ordered position 80th percentile = 3.39 + 0.6(3.39 - 3.39) 80th percentile = 3.39
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
P(5) = 0.41 P(6) = 0.20 P(7) = 0.07 P(A) = P(5) + (P6) + (P7) = 0.41 + 0.20+ 0.07 = 0.68 P(3) = 0.08 P(4) = 0.24 P(5) = 0.41 P(B) = P(3) + P(4) + P(5) = 0.08 + 0.24 + 0.41 = 0.73 P(Ā) = 1 – P(A) = 1 – 0.68 = 0.32 P(A) = P(5) + P(6) + P(7) A B = 0.41 Ո P (A U B) = P(A) + P(B) – P(A B) Ո = 0.68 + 0.73 – 0.41= 1 a) Find the probability of event A P (A) is the number of days greater than 4 (which is day 5,6 and 7) b) Find the probability of event B P(B) is the number of days less than 6 c) Find the probability of the complement of event A. Complement of event A is “it will be less than four days before the machinery becomes operational” d) Find the probability of the intersection of events A and B P(B) = P(3) + P(4) + P(5) P(5) occurs if A and B occur e) Find the probability of the union of events A and B
a) Show (A B) U (Ā B) = B Ո Ո A B = O1 Ո Ā = O3, O4 b) Show A U (Ā B) = A U B Ո Ā B = O3 Ո B = O1, O3 Ā B = O3 Ո Hence, O1, O3 = O1, O3 A= O1, O2 A U (Ā B) = O1, O2, O3 Ո A U B = O1, O2, O3 Hence, O1, O2, O3 = O1, O2, O3