2018 Sydney Grammar Yr 12 Physics Half Yearly - Advanced Mechanics questions with solutions

pdf

School

The University of Sydney *

*We aren’t endorsed by this school

Course

1998

Subject

Physics

Date

Nov 24, 2024

Type

pdf

Pages

25

Uploaded by JudgeFlowerMongoose5

Report
- 2018 FORM VI HALF-YEARLY EXAMINATION Wednesday 21 st February Physics General Instructions Working time 2 hours Board-approved calculators may be used Write using black pen Draw diagrams using pencil A data sheet, formulae sheets and Periodic Table are provided at the back of this paper Write your student number at the top of the Multiple Choice Answer Sheet and each page of Part B Hand in your Multiple Choice Answer Sheet and all of Part B in one bundle. (Do not staple together) Total marks ( 80 ) This paper has two parts, Part A and Part B Part A Total marks ( 15 ) Attempt ALL Questions Allow about 20 minutes for this part Part B Total marks ( 65 ) Attempt ALL Questions Allow about 1 hour and 40 minutes for this part Physics Classes 1. PCK 2. MRW 3. ILM 4. SRW 5. PCK 6. AAH EXAMINERS: AAH / MRW / SRW / PCK CHECKLIST Each boy should have the following: 1 Question Paper 1 Multiple Choice Answer Sheet
Form VI Physics 2018 Half Yearly Examination Page 3 of 30 1. When an object of mass 80 kg on the Earth’s surface is taken to the Moon’s surface, it would: (A) have the same weight. (B) have the same gravitational force acting on it. (C) have the same mass. (D) reach the ground in the same time if dropped from the same height. The following information applies to the next two questions. A satellite is in orbit at a radius of r metres from the Earth with a period of T seconds and a GPE of E p . It is desired to increase its orbital radius to 4 r . 2. The gravitational potential energy of the satellite is now: (A) 0.25E p (B) 0.75E p (C) E p (D) 3E p 3. The period of the satellite in its new orbit will be: (A) T (B) 2 T (C) 4 T (D) 8 T
2018 Form VI Physics Half-Yearly Examination Page 4 of 30 4. If the cable tethering an astronaut to the shuttle in Earth orbit breaks during a spacewalk, then: (A) she will fly off into space, as the gravitational forces acting on shuttle and astronaut are different. (B) she will remain next to the shuttle as the acceleration of the shuttle and the astronaut are the same. (C) she will remain next to the shuttle as the force of the Sun on the astronaut and shuttle keeps them in orbit. (D) she will fly off into space as the force of the Sun on the astronaut will cause her to fall into the Sun. 5. Which of the following is not correct when comparing these two types of satellites? Property Low Earth Orbit Satellite Geostationary Satellite (A) speed slower faster (B) acceleration higher lower (C) latitude any equatorial (D) orbital period shorter longer
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Form VI Physics 2018 Half Yearly Examination Page 5 of 30 7. When a descending Space-X reusable rocket stage (two pictured) of mass, m, is slowing down to land it has the following forces on it: Which of the following is the correct acceleration of the rocket? (A) Í ? Ð à downwards (B) Í à upwards (C) Ð à downwards (D) Í ? Ð à upwards T, Thrust force W, Weight force
Form VI Physics 2018 Half Yearly Examination Page 7 of 30 13. A four-arm cross is set up to rotate around an axis as shown below. What is the magnitude of the net torque acting on the cross? (A) 0 Nm (B) 9 Nm (C) 11 Nm (D) 25 Nm 2 m 3 m 4 m 2 N 2 N 3 N 3 N 1 m
2018 Form VI Physics Half-Yearly Examination Page 9 of 30 Candidate Number Part B Total marks ( 65 ) Attempt ALL Questions Allow about 1 hour and 40 minutes for this Part Answer the questions in the spaces provided. Show all relevant working in questions involving calculations. Question 16 (3 marks) Marks The acceleration due to gravity on Mars is about 1/3 of g on Earth, whereas the radius of Mars is roughly half that of Earth. Estimate the ratio of the mass of Mars to the mass of Earth. ........................................................................................................................................ 3 ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2018 Form VI Physics Half-Yearly Examination Page 10 of 30 Question 17 (6 marks) Marks On a tall platform an arrow (arrow A) is fired horizontally from a height of 40 m and hits a target 50 m horizontally away. Another arrow (arrow B) is fired upwards, hitting the same target again. Arrow B was in the air for twice as long as arrow A. What is the time of flight of arrow A? .............................................................................................................................. 1 .............................................................................................................................. What is the initial horizontal velocity of arrow A? .............................................................................................................................. 1 .............................................................................................................................. Question 17 continued on next page. Arrow B Arrow A 40 m 50 m target archer NOT TO SCALE
2018 Form VI Physics Half-Yearly Examination Page 11 of 30 Candidate Number Question 17 continued Marks Determine the initial velocity of arrow B. .............................................................................................................................. 4 .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. ..............................................................................................................................
2018 Form VI Physics Half-Yearly Examination Page 12 of 30 Question 18 (4 marks) Marks A spanner of mass 2 kg is dropped from rest from a distance of 2.737× 10 6 m from the centre of the moon, which has a mass of 7.35 × 10 22 kg and a radius of 1.737× 10 6 m. Determine the speed of the spanner on collision with the moon. ........................................................................................................................................ 4 ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2018 Form VI Physics Half-Yearly Examination Page 13 of 30 Candidate Number Question 19 (3 marks) Marks A satellite of mass ? is in a circular orbit around a planet of mass 𝑀 at a distance of 𝑟 metres from the centre of the planet. Use Newton’s Law of Universal Gravitation to derive a formula for the kinetic energy of the satellite in terms of G , M , m and r . ........................................................................................................................................ 3 ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................ ........................................................................................................................................
2018 Form VI Physics Half-Yearly Examination Page 15 of 30 Candidate Number Question 20 (7 marks) Marks A satellite is orbiting a planet α that rotates once every 7 .0 earth-days. In a low orbit the satellite goes around the planet 11.2 times for every rotation of the planet at an orbital radius of 3.46 × 10 7 m. What is the period of the satellite around planet α ? .............................................................................................................................. 1 .............................................................................................................................. The satellite then has its orbital radius increased so the satellite is in a synchronous orbit, remaining at the same fixed point above the planet’s surface. i) Determine the orbital radius that would be required for this to occur. .............................................................................................................................. 2 .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. ii) What other condition needs to be met for the satellite to remain at the same fixed point above the planet’s surface? .............................................................................................................................. 1 .............................................................................................................................. iii) Determine the mass of the planet α. .............................................................................................................................. 3 .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. ..............................................................................................................................
2018 Form VI Physics Half-Yearly Examination Page 17 of 30 Candidate Number Question 22 (5 marks) Marks A boy performs an experiment on a moving train, as shown in the diagram below. When he drops the ball, he finds that its falls diagonally backwards, and lands 0.75 m behind where he was standing. He concludes that the train is a non-inertial frame of reference. Outline the meaning of the term ‘non - inertial frame of reference’. .............................................................................................................................. 1 .............................................................................................................................. Explain the behaviour of the ball, from the perspective of an observer standing on the Earth. .............................................................................................................................. 2 .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. Estimate t he magnitude of the train’s acceleration. .............................................................................................................................. 2 .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. .............................................................................................................................. motion 1.0 m 0.75 m
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
PHYSICS Form VI Half-Yearly Examination 2018 Wed 21 Feb PM Multiple Choice ANSWER SHEET Class Student Number General Instructions Write your class and Candidate Number in the space provided. Attempt all questions Use a blue or black pen Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely. ANSWER DISTRIBUTION Answer A B C D 1 C 0% 0% 100% 0% 2 A 97% 0% 2% 1% 3 D 0% 1% 7% 92% 4 B 11% 87% 2% 0% 5 A 93% 6% 1% 0% 6 C 32% 3% 38% 27% 7 D 13% 0% 2% 84% 8 B 16% 81% 3% 0% 9 C 0% 4% 93% 1% 10 D 3% 6% 8% 83% 11 C 3% 2% 94% 0% 12 D 0% 0% 9% 91% 13 B 3% 89% 4% 3% 14 A 97% 3% 0% 0% 15 B 17% 78% 1% 3%
1. When an object of mass 80 kg on the Earth’s surface is taken to the Moon’s surface, it would: (A) have the same weight. (B) have the same gravitational force acting on it. (C) have the same mass. (D) reach the ground in the same time if dropped from the same height. The following information applies to the next two questions. A satellite is in orbit at a radius of r metres from the Earth with a period of T seconds and a GPE of E p . It is desired to increase its orbital radius to 4 r . 2. The gravitational potential energy of the satellite is now: (A) 0.25E p (B) 0.75E p (C) E p (D) 3E p 3. The period of the satellite in its new orbit will be: ሺAሻ T (B) 2 T (C) 4 T (D) 8 T
, I W K H F D E O H W H W KH U L Q J D Q D V W U R QD X W R W K H V K X W O H LQ ( D U W K R U E L W E U H D N V G X U LQ J D VS D F H ZD O N W K H Q $ V K H ZL O I O \R I L Q W R V S D F H D VW KH J U D Y L WD WL R QD O I RUF H VD FWL Q J RQVKXWOHDQG D V W U R QD X WD UH G L I H UH Q W % V K H ZL O U HP D L QH [W RW K H VK X W OHD VW K H D F H OH U D W L R Q R IW KH VKX W O H D Q GW KH D V W U R QD X WD UH W KH VDP H & V K H ZL O U HP D L QH [W RW K H VK X W OHD VW K H IR U F H R IW K H 6 X QR Q W KH D V W UR Q D XWD Q G V K X WO H NH SVW K HP L Q R UE L W V K H ZL O I O \R I L Q W R V S D F H D VW KH I R U F H R I W KH 6 X Q R QW K HD V W U RQ D X W Z LO F D X V H K H U W R I D OL Q W RW KH 6X Q :K L F KR I W KH I R O R Z L Q JLV QRW F R U H F W ZK H Q F RP SD U L Q J W KH VH WZ R W \S H V R I VD W H O L WH V " Property Low Earth Orbit Satellite Geostationary Satellite ° ± ° ²° ³ ° ± speed slower faster ° ± ° ²° % ° ³° ± acceleration higher lower ° ± ° ²° & ° ³° ± latitude any equatorial ° ± ° ²° ³ ° ± orbital period shorter longer ° ±
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
: KHQDGH VFHQGLQJ6SDFH;UHXVDEOHURFNHWVWDJHWZRSLFW XUHG RIP DV m, is VORZLQJ G R Z Q W R O D QG L W KD VW KHIRORZLQJIRUFHVRQLW :KLFKRIWKH IRO RZLQJLVWKHFR U HF WDFFHO H UD WL R QRI W K H U RF NH W " °$± °Í°?°Ð ° à ´ µ ´ } ´ Á ´ v ´ Á ´ ´ OE ´ µ ´ ° ± °²°%°³°± ² Í ² à ´ μ ´ ´ Á ´ ¶´ OE ´ µ ´ ° ± °²°&°³°± ² Ð ² à ´ µ ´ } ´ Á ´ v ´ Á ´ ´ OE´ µ ´ ° ± °²°'°³ °± ²Í²?²Ð ² à ´ μ ´ ´ Á ´ ´ OE´ µ ´ T, Thrust force W, Weight force
$IRXUDUP F URVLVHWXSWRURWDWHD URXQGDQD [L VDVKRZQE H O R Z : K D WL V W KHP D J QL W X GH RI W K H QH W R U T X HD F W L Q J RQ W K HF U R V " $ 1P % 1P & 1P 1P 2 m 3 m 4 m 2 N 2 N 3 N 3 N 1 m
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CRIB (AAH) Question 22 (5 marks) Marks A boy performs an experiment on a moving train, as shown in the diagram below. When he drops the ball, he finds that its falls diagonally backwards, and lands 0.75 m behind where he was standing. He concludes that the train is a non-inertial frame of reference. Outline the meaning of the term ‘non-inertial frame of reference’. 1 1 Mark for any sensible outline, e.g.: A frame of reference that is accelerating. A frame of reference in which the law of inertia does not hold. A frame of reference which is experiencing a non-zero net force. Explain the behaviour of the ball, from the perspective of an observer standing on the Earth. 2 Marks Criteria 2 Explains that the ball falls in a parabolic arc (constant horizontal velocity, constant vertical acceleration). Explains why the ball lands behind the boy (the boy continues to accelerate to the left but the ball does not). 1 Either of the points above. The question asks pupils to explain the “behaviour” of the ball. The most significant (because it is in some sense ‘anomalous’) feature of this behaviour is that the ball falls behind the boy . An explanation of this is therefore essential to gaining full marks in this question. NB 1 : The question required pupils to explain the behaviour, not simply to describe it. Pupils who scored only one mark usually did so because they did not explain why the ball lands behind the boy. NB 2 : Many pupils answered the question from the train’s frame of reference, not that of an external observer. These answers scored no marks . NB 3 : Answers that incorrectly describe the ball’s motion to the stationary observer (e.g. ‘the ball falls straight down’ or ‘the ball falls in a straight line’) usually scored no marks. However, a number of pupils assumed that the ball is dropped when the train is initially at rest, but accelerating to the left (the question makes it clear that this is not the case); these answers scored a maximum of 1 Mark. NB 4 : As the question is only worth two marks, it was not necessary to explain why the ball appears to fall in a straight line. (Though this might have been required if the question had been worth more marks.) motion 1.0 m 0.75 m
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Sample Answer to Part (b) After the boy lets the ball go, it continues with a constant horizontal velocity (to the left) as it accelerates towards the ground, so it falls in a parabolic arc. After he has let go of the ball, the boy continues to accelerate to the left with the train. He therefore travels a greater horizontal distance than the ball, which ends up somewhere behind him when it hits the floor. Estimate the magnitude of the train’s acceleration. 2 Multiple approaches are possible here, but the simplest was to recognise that, since ݎ ܽݐ and ݎ ݃ݐ , a/g are in the same ratio as r H /r V . Thus, a/g = 0.75/1.0 a = 7.4 ms -2 . [2 Marks] [ 1 Mark ] for using ݎ ݃ݐ to calculate t = 0.45 s.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help