BMES 345 CH03 Problem Set 20240402(1)
.docx
keyboard_arrow_up
School
Drexel University *
*We aren’t endorsed by this school
Course
345
Subject
Mechanical_engineering
Date
May 24, 2024
Type
docx
Pages
31
Uploaded by MateOxide24488
BMES 345 CHAPTER 3 PROBLEMS: LINEAR VISCOELASTICITY
Contents
Problem 1: Spring-Dashpot Models
.............................................................................................................................
2
Problem 2: Spring-Dashpot Models
.............................................................................................................................
3
Problem 3: Viscoelasticity
.............................................................................................................................................
4
Problem 4: Viscoelasticity
.............................................................................................................................................
5
Problem 5: Spring-Dashpot Models
.............................................................................................................................
6
Problem 6: Spring-Dashpot Models
.............................................................................................................................
7
Problem 7: Spring-Dashpot Models
.............................................................................................................................
8
Problem 8: Spring-Dashpot Models
.............................................................................................................................
9
Problem 9: Spring-Dashpot Models
...........................................................................................................................
10
Problem 10: Spring-Dashpot Models
.........................................................................................................................
11
[Solution] Problem 1
......................................................................................................................................................
12
[Solution] Problem 2
......................................................................................................................................................
13
[Solution] Problem 3
......................................................................................................................................................
16
[Solution] Problem 4
......................................................................................................................................................
18
[Solution] Problem 5
......................................................................................................................................................
20
[Solution] Problem 6
......................................................................................................................................................
22
[Solution] Problem 7
......................................................................................................................................................
23
[Solution] Problem 8
......................................................................................................................................................
25
[Solution] Problem 9
......................................................................................................................................................
27
[Solution] Problem 10
....................................................................................................................................................
28
1
Problem 1: Spring-Dashpot Models
Match the creep curve with the corresponding spring-dashpot model.
2
Problem 2: Spring-Dashpot Models
In a recent study by Rubiano et al (
J Mech Behav Biomed Mater
2016), researchers injected adipose-
derived stem cells into the damaged hearts of hypertensive rats, and observed significant improvements in mechanical properties and clinical outcomes. One of the ways they measured improvements was via viscoelastic testing of the heart tissue. In this study, they modeled the viscoelasticity of the heart using the standard linear solid. Rubiano et al determined that the standard
linear solid parameters for the normal, healthy heart tissue were E
1
= 13 kPa, E
2
= 15 kPa, and η = 2,380 kPa-s. Using this information, sketch the following (make sure the curves and axes are clearly and properly labeled):
a)
A creep curve for the heart tissue, using an applied stress of σ
0
= 2 kPa.
b)
A stress relaxation curve for the heart tissue, using an applied strain of ε
0
= 0.05.
3
Problem 3: Viscoelasticity
Consider the following stress relaxation curve for an osteoblast (bone-producing cell) subjected to a constant strain ε
0
= 0.03:
0
50
100
150
200
250
300
350
400
0
5
10
15
20
25
30
35
40
45
50
Stress (Pa)
Time (s)
Based on the stress vs. time graph, determine the following:
a)
Instantaneous modulus
b)
Equilibrium modulus
c)
Relaxation time constant
d)
If the same osteoblast was subjected to a creep test at a constant stress σ
0
= 600 Pa, what would the instantaneous and equilibrium (asymptotic) strains be? Sketch the creep curve with appropriately labeled and scaled axes.
4
Problem 4: Viscoelasticity
In a study of how botox-induced unloading of the Achilles tendon altered the biomechanical properties
of the tissue (Khayyeri et al, Scientific Reports 2017), researchers measured the viscoelastic properties of rat Achilles tendons using a creep test. Using a constant applied stress of σ
0
= 16 MPa
, the researchers obtained the following creep curve:
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0
30
60
90
120
150
Normal Strain
Time (s)
Find the following parameters (remember to show your work):
a)
Instantaneous modulus E
0
b)
Equilibrium modulus E
∞
c)
Creep time constant τ
c
5
Problem 5: Spring-Dashpot Models
Download the Excel file containing stress relaxation data (stress_relax.xlsx) from BB Learn. In that file, you have the stress relaxation response of a breast cancer cell subjected to a normal strain ε = 0.05. You also have a curve fit (which matches the general form of the stress relaxation response of a standard linear solid):
σ
(
t
)=
E
2
ε
0
exp
(
−
t
τ
)
+
E
1
ε
0
Determine the parameters E
1
, E
2
, and τ
of the breast cancer cell using the standard linear solid model. a)
Using the equation above and the definitions of instantaneous modulus, equilibrium modulus, and the characteristic time constant, estimate the parameters. b)
Now use the Excel Solver add-in to minimize the sum of squared error term to come up with a “best fit” curve. 6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help