complete lab doc
docx
keyboard_arrow_up
School
Nevada State College *
*We aren’t endorsed by this school
Course
MISC
Subject
Mechanical Engineering
Date
Feb 20, 2024
Type
docx
Pages
5
Uploaded by SargentSalamanderMaster1046
BIOS251 OL, Week 1 Lab
Name: Maryssa Angulo
OL Lab 1: Homeostatic Control: How does the human body keep itself in balance?
Learning Objectives:
List some of the main physiological variables under homeostatic control
Employ appropriate vocabulary to discuss the processes and concepts of homeostasis
Explain the steps in a homeostatic pathway from stimulus to response
Compare different types of feedback loops
Identify signs of homeostatic disruption and determine the underlying mechanism
Introduction:
The human body is a very complex combination of finely-tuned machinery. Every organ system is dependent on the other to carry out its physiological functions along with maintaining an internal equilibrium. Homeostasis is the ability of the body to maintain an
internal balance to in the body. So how does it always keep everything in balance? In this simulation, you will learn about the underlying regulatory workflow involved in the homeostatic process, through the examples of body temperature, blood pressure, and blood sugar regulation. Observe homeostasis in action
You will test different settings on our virtual volunteer, Phineas. You will observe and analyze how the body reacts to the various stimuli such as changes in temperature, heart rate, and blood glucose levels in the body. Using a 3D model of the human body, you will be able to apply one or more stimuli on the test subject, to observe an immediate visible impact on physiological variables. From your observations, you will identify the sensors detecting the stimuli, the control center processing them, and the effectors acting to counter them on Phineas’ body. Finally, you will interpret the resulting changes in those variables to explain the homeostatic phenomenon.
BIOS251 OL, Week 1 Lab
Name: Maryssa Angulo
Part 1: Complete Labster Homeostatic Control
Complete.
Part 2: Report and Reflection
Purpose: Describe in your own words and in complete sentences, the purpose of this experiment.
The purpose of this experiment was to show how different activities effect the bodies normal resting homeostasis. It demonstrated what the bodies vitals were when resting, moderate exercise, intense exercise, also what happens to the body when eating a snack. Each of the factors that were used in the experiment demonstrated what happens to the bodies homeostasis and how each factor changes what happens to maintain balance throughout the entire body. For example, the body adjusted to the blood sugar levels using insulin and glucagon to maintain a healthy level of glucose. Observations: List 2 observations you have made in this simulation.
When the volunteer Phineas began to intensely exercise the bodies heart rate increased.
When the volunteer ingested the snack the bodies reaction to the snack was to maintain homeostasis by the insulin and glucagon working together to maintain a
healthy balance. Answer all the questions below:
1.
Why is it essential to have maintain homeostasis? (1 point)
So the body can maintain a healthy balance throughout all of the organs and it can maintain a healthy function. 2.
Provide an example of positive feedback mechanism and identify the stimuli, the central processing unit and the effectors involved in the pathway. (2 points)
When the body releases oxytocin during labor, the stimuli is increased contractions due to the oxytocin to complete the delivery. 3.
In the simulation, what were the organs involved in homeostatic control? (2 points)
The integumentary system, and the pancreas.
BIOS251 OL, Week 1 Lab
Name: Maryssa Angulo
1.
Using the figure below identify the abdominopelvic regions (5 points)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
BIOS251 OL, Week 1 Lab
Name: Maryssa Angulo
Regions
A
Right upper Quadrant
(hypochondriac)
B
Epigastric quadrant C
Left upper quadrant (hypochondriac)
D
Right Lumbar quadrant
E
Umbilical Quadrant F
Left Lumber Quadrant
G
Right lower Quadrant
(Iliac)
H
Hypogastric Quadrant
I
Left lower quadrant (iliac)
BIOS251 OL, Week 1 Lab
Name: Maryssa Angulo
1.
Reflection: Reflect on at least 2 key concepts you have learned from this simulation. How would you relate it to the physiological functions of the body?
Two key concepts that I have taken away from this lab are, the importance of the body to maintain a healthy homeostasis so the functions throughout the body remain within normal levels. Also, what happens to the body when eating a snack and how sugar really effects your glucagon and insulin levels. Both of these take aways are main bodily
functions that are happening within our body without us even knowing that they are taking place and keeping the body regulated. Grading Rubric:
Activity
Deliverable
Points
Part 1
Complete simulation
15
Part 2
Complete lab report and answer questions
Purpose (1 point)
Observation (2 points)
Questions (10 points)
Reflection (2 points)
15
Total
Complete all lab activities
30
Related Documents
Related Questions
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (ObsW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/ObsW, Mean (+-)1SD NW/ObsW) were created. Analyse ,Interpret the graphs and make a conclusion of the result attached.
arrow_forward
The rapid progress of engineering design and information technology has caused difficulties in analyzing system reliability. Because of the increased complexity in system reliability structure (component/subsystem interfaces), many unexpected failure modes could occur, and their behaviors are interdependent. At a system’s design and development stage, the main challenge in analyzing a complex system is the failure uncertainty introduced by the incomplete knowledge of the system. This makes it hard to decompose system reliability into subsystem/component reliability in a deterministic manner, such as series or parallel systems. As a result, some common reliability analysis tools such as fault tree (FT) and reliability block diagram (RBD) become inadequate. Do you agree, why or why not? Are there any other approaches to system reliability assessment beside these tools at the early system’s design and development stage (what are these approaches)?
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.
arrow_forward
Learning Goal:
To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times.
The equation of motion for a particle of mass m
can be written as
∑F=ma=mdvdt
By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum:
∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1
For problem-solving purposes, this principle is often rewritten as
mv1+∑∫t2t1Fdt=mv2
The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum.
A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1300 N/ms , b = 300 N/ms2 , and t is the time (in milliseconds). The ball is in contact with the racket for 2.90 ms . If the tennis ball has a mass of 59.7 g , what is the resulting velocity of the ball, v, after the ball is hit by the racket?
arrow_forward
Don't use chatgpt will upvote
arrow_forward
2) A device used in a ground radar system has age to failure that is described approximately by a
Weibull distribution with mean life 83 h, shape parameter 1.5, and location parameter zero.
When it fails it takes on average 3.5 h to repair:
a) Calculate the reliability over a 25 h period, and the 'steady state' availability of the device.
b) Calculate the reliability over 25 h, and the ‘steady state' availability of a subsystem that
consists of two of these devices in active parallel redundancy.
arrow_forward
A. A student establishes the time constant of a temperature sensor by first holding it immersed in hot water and then
suddenly removing it and holding it immersed in cold water. Several other students perform the same test with
similar sensors. Overall, their results are inconsistent, with estimated time constants differing by as much as a
factor of 1.2. Offer suggestions about why this might happen. Hint: Try this yourself and think about control of
test conditions.
B. Which would you expect to be better suited to measure a time-dependent temperature, a thermal sensor (e.g., a
thermocouple) having a small diameter spherical bead or one having a large diameter spherical bead? Why?
arrow_forward
I asked bartleby to solve this question earlier, it gave me AI answer which is completely different to what's shown in this answer. I don't know which one is correct now. I have attached screenshots of the AI answer. Can you clarify which is correct. Also I previously asked about pv diagram and you said ' the curve in the explanation is correct', did you mean in your explanation or the one I showed as an example? Please advice
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
(b) A special sprinkler system is comprised of three identical humidity sensors,
a digital controller, and a pump, of which the reliability is 0.916, 0.965, and
0.983 respectively. The system configuration is shown in the figure below.
Sensor
Controller
Pump
Reliability block diagram of a sprinkler system.
(b) Calculate the reliability of the sprinkler system.
(c) Discuss the importance of safety in an engineering maintenance.
arrow_forward
After creating a decision matrix for two types of materials used to design a safety belt, an engineer assigns a weight of 4 to nylon for thickness and a weight of 5 to polyester for thickness. The engineer also assigns a weight of 4 to nylon for strength and a weight of 3 to polyester for strength. Polyester is more expensive than nylon. Describe which material would be preferable to use for the safety belt, if cost is prioritized as a criterion
arrow_forward
Τρ
סוי
D2L Notes de cours 2 - MA...
D2L Solutions d'examen -...
B https://uottawa.brights...
ChatGPT
← Homework 4 - Fall 2024
Question 5 of 6
<
View Policies
education.wiley.com
ELG 3736 - Google Docs
On mesure la traînée s...
WP Homework 4 - Fall 2024
X W Question 5 of 6 - Hom...
- / 20
0
Current Attempt in Progress
If the center of the ping-pong ball is to clear the net as shown, at what height h should the ball be horizontally served? Also determine
h2. The coefficient of restitution for the impacts between ball and table is e = 0.71, and the radius of the ball is r = 0.75 in.
T
✓
Answers:
h =
in.
h2=
eTextbook and Media
Save for Later
in.
Attempts: 0 of 1 used
Submit Answer
arrow_forward
answer and feedback attached, can show steps more clearly please
arrow_forward
Τρ
סוי
D2L Notes de cours 2 - MA...
D2L Solutions d'examen -...
B https://uottawa.brights...
ChatGPT
← Homework 4 - Fall 2024
Question 6 of 6
<
View Policies
education.wiley.com
ELG 3736 - Google Docs
On mesure la traînée s...
WP Homework 4 - Fall 2024
X W Question 6 of 6 - Hom...
- / 20
0
Current Attempt in Progress
A small ball is projected horizontally toward an incline as shown. Determine the slant range R. The initial speed is vo = 18 m/s, and the
coefficient of restitution for the impact at A is e = 0.85.
VO
Answer: R =
34°
eTextbook and Media
Save for Later
R
m
B
Attempts: 0 of 1 used
Submit Answer
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (ObsW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/ObsW, Mean (+-)1SD NW/ObsW) were created. Analyse ,Interpret the graphs and make a conclusion of the result attached.arrow_forwardThe rapid progress of engineering design and information technology has caused difficulties in analyzing system reliability. Because of the increased complexity in system reliability structure (component/subsystem interfaces), many unexpected failure modes could occur, and their behaviors are interdependent. At a system’s design and development stage, the main challenge in analyzing a complex system is the failure uncertainty introduced by the incomplete knowledge of the system. This makes it hard to decompose system reliability into subsystem/component reliability in a deterministic manner, such as series or parallel systems. As a result, some common reliability analysis tools such as fault tree (FT) and reliability block diagram (RBD) become inadequate. Do you agree, why or why not? Are there any other approaches to system reliability assessment beside these tools at the early system’s design and development stage (what are these approaches)?arrow_forwardAnalysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.arrow_forward
- Learning Goal: To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times. The equation of motion for a particle of mass m can be written as ∑F=ma=mdvdt By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum: ∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1 For problem-solving purposes, this principle is often rewritten as mv1+∑∫t2t1Fdt=mv2 The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum. A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1300 N/ms , b = 300 N/ms2 , and t is the time (in milliseconds). The ball is in contact with the racket for 2.90 ms . If the tennis ball has a mass of 59.7 g , what is the resulting velocity of the ball, v, after the ball is hit by the racket?arrow_forwardDon't use chatgpt will upvotearrow_forward2) A device used in a ground radar system has age to failure that is described approximately by a Weibull distribution with mean life 83 h, shape parameter 1.5, and location parameter zero. When it fails it takes on average 3.5 h to repair: a) Calculate the reliability over a 25 h period, and the 'steady state' availability of the device. b) Calculate the reliability over 25 h, and the ‘steady state' availability of a subsystem that consists of two of these devices in active parallel redundancy.arrow_forward
- A. A student establishes the time constant of a temperature sensor by first holding it immersed in hot water and then suddenly removing it and holding it immersed in cold water. Several other students perform the same test with similar sensors. Overall, their results are inconsistent, with estimated time constants differing by as much as a factor of 1.2. Offer suggestions about why this might happen. Hint: Try this yourself and think about control of test conditions. B. Which would you expect to be better suited to measure a time-dependent temperature, a thermal sensor (e.g., a thermocouple) having a small diameter spherical bead or one having a large diameter spherical bead? Why?arrow_forwardI asked bartleby to solve this question earlier, it gave me AI answer which is completely different to what's shown in this answer. I don't know which one is correct now. I have attached screenshots of the AI answer. Can you clarify which is correct. Also I previously asked about pv diagram and you said ' the curve in the explanation is correct', did you mean in your explanation or the one I showed as an example? Please advicearrow_forwardAs an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…arrow_forward
- As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…arrow_forward(b) A special sprinkler system is comprised of three identical humidity sensors, a digital controller, and a pump, of which the reliability is 0.916, 0.965, and 0.983 respectively. The system configuration is shown in the figure below. Sensor Controller Pump Reliability block diagram of a sprinkler system. (b) Calculate the reliability of the sprinkler system. (c) Discuss the importance of safety in an engineering maintenance.arrow_forwardAfter creating a decision matrix for two types of materials used to design a safety belt, an engineer assigns a weight of 4 to nylon for thickness and a weight of 5 to polyester for thickness. The engineer also assigns a weight of 4 to nylon for strength and a weight of 3 to polyester for strength. Polyester is more expensive than nylon. Describe which material would be preferable to use for the safety belt, if cost is prioritized as a criterionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY