Lab3temp_151_24A
pdf
keyboard_arrow_up
School
Texas A&M University *
*We aren’t endorsed by this school
Course
151
Subject
Mathematics
Date
Apr 3, 2024
Type
Pages
14
Uploaded by SargentSeahorsePerson1986
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
1/14
MATH 151 Lab 3
Put team members' names and section number here.
Question 1
1a
In [128…
import
sympy as
sp
from
sympy.plotting import
(
plot
,
plot_parametric
)
In [ ]:
Section 404 -
Group 3 Lisa Pham
,
Coby Holley
,
Bradley White
,
Owen Koss
, Redlin Krueger
,
Garret Worden In [2]:
matplotlib notebook
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
2/14
In [11]:
# Start your code here
#x = symbols('x')
import
numpy as
np
import
matplotlib.pyplot as
plt
from
sympy import
limit
, Symbol
, sqrt
, sin
, pi
# function definition
def
f
(
x
):
return
np
.
sqrt
(
x
**
3 +
x
**
2
) *
np
.
sin
(
np
.
pi
/
x
) +
2
def
g
(
x
):
return
np
.
full_like
(
x
, -
2
)
def
h
(
x
):
return
np
.
full_like
(
x
, 2
)
# domain
x =
np
.
linspace
(
-
0.8
, 0.8
, 100
)
# x values
f_values =
f
(
x
)
g_values =
g
(
x
)
h_values =
h
(
x
)
# plot
plt
.
plot
(
x
, f_values
, label
=
'f(x)'
)
plt
.
plot
(
x
, g_values
, label
=
'g(x)'
)
plt
.
plot
(
x
, h_values
, label
=
'h(x)'
)
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
3/14
# plot defintion
plt
.
xlabel
(
'x'
)
plt
.
ylabel
(
'y'
)
plt
.
title
(
'Graph of f(x), g(x), and h(x)'
)
plt
.
legend
()
plt
.
show
()
#plot(x**2,(x,0,1))
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
4/14
1b
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
5/14
lim_{x->0} g(x) = -2
lim_{x->0} h(x) = 2
lim_{x->0} f(x) = -2
1c
In [15]:
# limits
lim_g =
g
(
0
)
lim_h =
h
(
0
)
lim_f =
lim_g print
(
"lim_{x->0} g(x) ="
, lim_g
)
print
(
"lim_{x->0} h(x) ="
, lim_h
)
print
(
"lim_{x->0} f(x) ="
, lim_f
) x_sym =
Symbol
(
'x'
)
f_expr =
sqrt
(
x_sym
**
3 +
x_sym
**
2
) *
sin
(
pi
/
x_sym
) +
2
In [16]:
# limits
lim_g =
g
(
0
)
lim_h =
h
(
0
)
lim_f =
lim_g print
(
"lim_{x->0} g(x) ="
, lim_g
)
print
(
"lim_{x->0} h(x) ="
, lim_h
)
print
(
"lim_{x->0} f(x) ="
, lim_f
) x_sym =
Symbol
(
'x'
)
f_expr =
sqrt
(
x_sym
**
3 +
x_sym
**
2
) *
sin
(
pi
/
x_sym
) +
2
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
6/14
lim_{x->0} g(x) = -2
lim_{x->0} h(x) = 2
lim_{x->0} f(x) = -2
lim_{x->0} f(x) (direct calculation) = 2
Question 2
2a through 2c
# limit of f(x) lim_f_direct =
limit
(
f_expr
, x_sym
, 0
)
print
(
"lim_{x->0} f(x) (direct calculation) ="
, lim_f_direct
)
In [66]:
import
numpy as
np import
matplotlib.pyplot as
plt import
sympy as
sp def
f
(
x
):
if
x <=
1
:
return
-
2
elif
1 <
x <=
3
:
return
2
*
x -
5
elif
3 <
x <=
5
:
return
(
x
**
2 -
2
*
x -
8
) /
(
x
-
4
)
#Limit of 1
left_limit_of_1 =
sp
.
limit (
f
(
1
), x
, 1
, '-'
)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
7/14
print (
"The left sided limit when x is approaching 1 is: "
, left_limit_of
right_limit_of_1 =
sp
.
limit (
f
(
1
+
0.0001
), x
, 1
, '+'
)
print (
"The right sided limit when x is approaching 1 is: "
, right_limit_
print (
"As the limit approaches 1 for f(x) from the right and the left doe
print ()
#Limit of 3
left_limit_of_3 =
sp
.
limit (
f
(
3
), x
, 3
, '-'
)
print (
"The left sided limit when x is approaching 3 is: "
, left_limit_of_
right_limit_of_3 =
sp
.
limit (
f
(
3
), x
, 3
, '+'
)
print (
"The right sided limit when x is approaching 3 is: "
, right_limit_o
print (
"As the limit approaches 3 for f(x) from the right and the left doe
print
()
#Limit of 5
left_limit_of_5 =
sp
.
limit (
f
(
5
), x
, 5
, '-'
)
print (
"The left sided limit when x is approaching 5 is: "
, left_limit_of_
right_limit_of_5 =
sp
.
limit (
f
(
5
), x
, 5
, '+'
)
print (
"The right sided limit when x is approaching 5 is: "
, right_limit_o
print (
"As the limit approaches 5 for f(x) from the right and the left doe
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
8/14
The left sided limit when x is approaching 1 is: -2
The right sided limit when x is approaching 1 is: -2.99980000000000
As the limit approaches 1 for f(x) from the right and the left does not e
qual each other f(x) is not continous.
The left sided limit when x is approaching 3 is: 1
The right sided limit when x is approaching 3 is: 1
As the limit approaches 3 for f(x) from the right and the left does equal each other f(x) is continous.
The left sided limit when x is approaching 5 is: 7.00000000000000
The right sided limit when x is approaching 5 is: 7.00000000000000
As the limit approaches 5 for f(x) from the right and the left does equal each other f(x) is continous.
2d
In [4]:
matplotlib notebook
In [127…
import
numpy as
np import
matplotlib.pyplot as
plt import
sympy as
sp def
f
(
x
):
if
x <=
1
:
return
-
2
elif
1 <
x <=
3
:
return
2
*
x -
5
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
9/14
There is a hole at x=4 therefore there is the error message.
C:\Users\27pha\AppData\Local\Temp\ipykernel_18748\3659915970.py:11: Runti
meWarning: invalid value encountered in scalar divide
return (x**2 - 2*x -8) / (x-4)
elif
3 <
x <=
5
:
return
(
x
**
2 -
2
*
x -
8
) /
(
x
-
4
) x_values =
np
.
linspace
(
0
, 7
)
y_values =
[
f
(
x
) for
x in
x_values
]
plt
.
plot
(
x_values
, y_values
)
print (
'There is a hole at x=4 therefore there is the error message.'
)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
10/14
Question 3
3a
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
11/14
1.0000063497741163
3b
In [8]:
import
math
n =
99999
sum
([
math
.
log
(
i
+
1
) for
i in
range
(
n
)])
/
(
n
*
math
.
log
(
n
)
-
n
)
#proves that any (non integer) number with stirling's formula will approxi
Out[8]:
In [126…
import
numpy as
np
import
matplotlib.pyplot as
plt
from
sympy import
factorial
, sqrt
, pi
# Define the factorial function f(x)
def
f
(
x
):
return
factorial
(
x
)
# Define Stirling's approximation function g(x)
def
g
(
x
):
return
sqrt
(
2 *
pi *
x
) *
(
x /
np
.
e
)
**
x
# Generate x values
x_values =
np
.
linspace
(
0.1
, 5
, 100
)
# Compute y values for both functions
f_values =
[
f
(
xi
) for
xi in
x_values
]
g_values =
[
g
(
xi
) for
xi in
x_values
]
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
12/14
# Plot the functions
plt
.
plot
(
x_values
, f_values
, label
=
'f(x)'
, linewidth
=
4
)
plt
.
plot
(
x_values
, g_values
, label
=
'g(x)'
)
# Add labels and legend
plt
.
xlabel
(
'x'
)
plt
.
ylabel
(
'f(x), g(x)'
)
plt
.
legend
()
# Show plot
plt
.
grid
(
True
)
plt
.
show
()
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
13/14
In [ ]:
2/21/24, 3:18 PM
Lab3temp_151_24A
localhost:8888/nbconvert/html/Lab3temp_151_24A.ipynb?download=false
14/14
In [ ]: