Chapter 6_Tutorial_W24_solution

pdf

School

University of Windsor *

*We aren’t endorsed by this school

Course

2910

Subject

Mathematics

Date

Feb 20, 2024

Type

pdf

Pages

9

Uploaded by LieutenantWaspMaster985

Report
Department of Mathematics and Statistics STAT2910-01: Statistics for Sciences Faculty of Science University of Windsor Tutorial for Chapter 6 with solution Exercise 1. Identify the choice that best completes the statement or answers the question. 1. If Z is a standard normal random variable, the area between z = 0 . 0 and z = 1 . 20 is 0 . 3849, while the area between z = 0 . 0 and z = 1 . 40 is 0 . 4192. What is the area between z = –1 . 20 and z = 1 . 40? a. 0.0343 b. 0.0808 c. 0.1151 d. 0.8041 2. If X is a normal random variable with a mean of 1228 and a standard deviation of 120, how many standard deviations are there from 1228 to 1380? a. 11.50 b. 10.233 c. 3.1989 d. 1.267 3. Given that Z is a standard normal variable, which of the following is the value z 0 for which P ( z z 0 ) = 0 . 242? a. 0.70 b. 0.65 c. –0.65 d. –0.70 4. The time it takes Jessica to bicycle to school is normally distributed, with a mean time of 15 minutes and a variance of 4 minutes. Jessica has to be at school at 8:00 a.m. Suppose it took her 23 minutes to get to school. What can you reasonably infer or conclude? a. Twenty-three minutes to school is not an unusually long commute time. b. A commuting time of 23 minutes is highly unusual or atypical. c. The distribution of commute times must not be normal with mean 15 minutes and standard devi- ation 2 minutes. d. Both b and c 5. If Z is a standard normal random variable, then the area between z = 0 . 0 and z = 1 . 30 is 0 . 4032, while the area between z = 0 . 0 and z = 1 . 50 is 0 . 4332. What is the area between z = –1 . 30 and z = 1 . 50? a. 0.0300 b. 0.0668 c. 0.0968 1
d. 0.8364 6. The scores of a class are normally distributed with a mean of 82 and a standard deviation of 8. What is the probability that the mean score of a sample of 64 students is at least 80? a. 0.0987 b. 0.4772 c. 0.5987 d. 0.9772 Solution 1. 1. d 2. d 3. d 4. d 5. d 6. d See the following graphs Exercise 2. A certain type of automobile battery is known to have a lifespan that is normally distributed, with mean 1100 days and standard deviation 80 days. For how long should these batteries be guaranteed if the manufacturer wants to replace only 5% of the batteries sold because they “died” before the guarantee expired? Solution 2. Let X denotes the lifespan of the battery, given that X N ( µ = 1100 , σ = 80), then P ( X < x 0 ) = 0 . 05 = P ( z < ( x 0 1100) / 80) = 0 . 05 = ( x 0 1100) / 80 = 1 . 645 . which implies that x 0 = 968 . 4 days 2
Normal Curve, mean = 1100 , SD = 80 Shaded Area = 0.05 x density 0.000 0.001 0.002 0.003 0.004 0.005 968.4 1100 Exercise 3. The annual rainfall in a particular area of the country is normally distributed, with mean 100 cm and standard deviation 20 cm. a. In a given year, what is the probability that the annual rainfall will be between 105 and 125 cm? b. A drought is said to occur after a year in which the annual rainfall dips below the 20th percentile. For a year to be classified as a year of drought, what would the annual rainfall in this area of the country have to be? Solution 3. a. Let X be the annual rainfall, given that X N ( µ = 100 , σ = 20), The requested probability is given by P (105 X 125) = P (0 . 25 Z 1 . 25) = 0 . 2957 b. P ( X x 0 ) = 0 . 20 = P ( Z ( x 0 100) / 20) = 0 . 20 = ( x 0 100) / 20 = 0 . 84 ; which implies that x 0 = 83 . 2 cm. A drought occurs in this area when the annual rainfall drops below 83 . 2 cm per year. 3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Normal Curve, mean = 100 , SD = 20 Shaded Area = 0.2956 x density 0.000 0.005 0.010 0.015 0.020 105 125 Normal Curve, mean = 100 , SD = 20 Shaded Area = 0.2005 x density 0.000 0.005 0.010 0.015 0.020 83.2 Exercise 4. A normal random variable X has an unknown mean µ and a standard deviation σ = 25. If the probability that X exceeds 7 . 5 is 0 . 8289, find µ . Solution 4. It is given that X is normally distributed with σ = 25 but with unknown mean µ , and that P ( X > 7 . 5) = 0 . 8289. In terms of the standard normal random variable Z , we can write, P ( X > 7 . 5) = P [ Z > (7 . 5 µ ) / 25] = 0 . 8289 = P [ Z (7 . 5 µ ) / 25] = 1 0 . 8289 = P [ Z (7 . 5 µ ) / 25] = 0 . 1711 = (7 . 5 µ ) / 25 = 0 . 95 . This implies µ = 25 × 0 . 95 7 . 5 = 31 . 25. Exercise 5. A random variable X is normally distributed with µ = 100 and σ = 20. a. What is the median of this distribution? b. Find P ( X median). c. Find P ( X 75) Solution 5. a. Since the normal distribution is symmetric, the mean and the median have the same value, so the median is 100. b. P ( X median) = P ( X 100) = P ( Z 0) = 0 . 50. c. P ( X 75) = P ( Z ≤ − 1 . 25) = 0 . 50 0 . 3944 = 0 . 1056 4
Normal Curve, mean = 100 , SD = 20 Shaded Area = 0.5 x density 0.000 0.005 0.010 0.015 0.020 100 Normal Curve, mean = 100 , SD = 20 Shaded Area = 0.1056 x density 0.000 0.005 0.010 0.015 0.020 75 100 Exercise 6. Let Z denote a standard normal random variable. a. Find P ( Z 1 . 48) b. Find P ( 0 . 44 < Z < 2 . 68) c. Determine the value of z 0 which satisfies P ( Z z 0 ) = 0 . 7995. d. Find P ( Z < 0 . 87) e. Find P ( 1 . 66 < Z < 0 . 48) f. Find z 0 such that P ( z 0 < Z < z 0 ) = 0 . 901 g. Find z 0 such that P ( Z z 0 ) = 0 . 0375 h. Find z 0 such that P ( z 0 < Z < z 0 ) = 0 . 7698 Solution 6. Let Z denote a standard normal random variable. a. P ( Z 1 . 48) = 0 . 0694 b. P ( 0 . 44 < Z < 2 . 68) = 0 . 6663 c. z 0 = 0 . 84 d. P ( Z < 0 . 87) = 0 . 1922 e. P ( 1 . 66 < Z < 0 . 48) = 0 . 2671 f. z 0 = 1 . 65 g. z 0 = –1 . 78 5
h. z 0 = 1 . 2 This can be show in the figure below Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.0694 x density 0.0 0.1 0.2 0.3 0.4 0 1.48 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.6664 x density 0.0 0.1 0.2 0.3 0.4 -0.44 2.68 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.7995 x density 0.0 0.1 0.2 0.3 0.4 0 0.84 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.1922 x density 0.0 0.1 0.2 0.3 0.4 -0.87 0 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.2672 x density 0.0 0.1 0.2 0.3 0.4 -1.66 -0.48 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.9011 x density 0.0 0.1 0.2 0.3 0.4 -1.65 1.65 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.0375 x density 0.0 0.1 0.2 0.3 0.4 -1.78 0 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.7699 x density 0.0 0.1 0.2 0.3 0.4 -1.2 1.2 Exercise 7. The distribution of IQ scores for high school graduates is normally distributed with µ = 104 and σ = 16. What is the 95th percentile of this normal distribution? Solution 7. P ( X x 0 ) = 0 . 05 = P ( Z ( x 0 104) / 16) = 0 . 05. Therefore, we have ( x 0 104) / 16 = 1 . 645. Hence, the 95th percentile is x 0 = 16 × 1 . 645 + 104 = 130 . 32. 6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Normal Curve, mean = 104 , SD = 16 Shaded Area = 0.05 x density 0.000 0.005 0.010 0.015 0.020 0.025 104 130.32 Exercise 8. Suppose Z has a standard normal distribution. Then between which two z-values (symmetrically dis- tributed around the mean) would 59 . 9% of the possible z-values occur? Solution 8. 59 . 9% of the possible z-values will occur between 0 . 8398 and 0 . 8398 Normal Curve, mean = 0 , SD = 1 Shaded Area = 0.599 x density 0.0 0.1 0.2 0.3 0.4 -0.8398 0.8398 7
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 -2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 -0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 -0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 -0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 Standard Normal Cumulative Probability Table Cumulative probabilities for NEGATIVE z-values are shown in the following table:
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 Standard Normal Cumulative Probability Table Cumulative probabilities for POSITIVE z-values are shown in the following table:
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help