solutions ws 7.5 pfd calc ab
pdf
keyboard_arrow_up
School
University of Notre Dame *
*We aren’t endorsed by this school
Course
MANAGERIAL
Subject
Mathematics
Date
Nov 24, 2024
Type
Pages
8
Uploaded by DrExplorationTurkey20
Section
7.5
Partial
Fractions
137
E&
Section
7.5
Partial
Fractions
i
;
|
}
!
5
5
A
B
4243
A
B
c
a
L
=
=24
A
-
g
IXZ“lOX
xx—10)
x
x-10
2(x—5)3
):45+(x~5)3+(x~5)3
3
-
ek
4,
=
=
=
=
3
410
x(x2+10)
x
x2+10
xP+4x+3
(x+Dx+3)
x+1
x+3
1
t
F
2x—=3
2x
-3
A
Bx+C
=2
x—2
A
B
I
I
{
i
I
s
l6x
__lex
A4
B
C
g
Bl
_A
Bx+C
DitE
T
-1
x(x—10)
x
x2
x-10
TxxTH1)?2
ox
o
xTH1
0
(212
i
R
S
1
__A
.
B
P
1
__A
.
B
0
&
Txl-1
(A
D
-1
x+1
o
x—1
"4x2-9
(x-3)(2x+3)
-3
2x+3
1=Alx—1)
+
Bx
+
1)
1=
AQx
+
3)
+
B(2x
—
3)
y
Whenx
=
—1,1
=
—24,4
=
-},
Whenx
=3,1
=6A,A
=1
i
Whenx
=
1,1
=2B,B
=},
Whenx
=
—3,1
=
—6B,B
=
—+.
1
1
1
1
1
1
1
1
1
i
-
=
—=
e
=
-
_
‘
thldx
2fx+1d‘
2fx~1d‘
[4x2—9d"
6[
FrariL
f2x+3d”]
:
1
1
I8
=
—gmp
1]+
il
1]+
C
=
J5linl2x
=
3~
nfar
+
3]
+
€
i
B
iR
e
1o
x—1
1.
|2x—3
.
==
s
2
|
L
z‘“x+1|
¢
121"2x+3’+c
3
3
A
B
x4l
(1
9’x3+x‘2"(x—1)(x+2)‘xvl+x+z
lo'fxz+4x+3dx_fx
to
e
o2
3
o1
3=(x+2)+Bx-1)
Whenx
=1,3=34,A=1.
Whenx
=
-2,3
=
-3B,B=
—1.
3
1
1
J’x2+x—2d17_]’x—1dx_fx+2dx
=lnjx~
1|
-Inx+2|+C
=
1
—lnx+2‘+C
1.
’5*):
_
5
—x
__A
3
B
P+
x—-1
(2x—-Dx+1)
2x—1
x+1
S5—x=Alx+1)+B2x-1)
Whenx
=
3,5
=34,4
=
3.
Whenx=
—1,6
=
—38,
B
=
—2.
Sk
1
1
‘[2x7+x~1dx‘3f2x—ldx—zfx-fldx
=%ln|2x*
1|
=2lx+1}+C
138
Chapter
7
Integration Techniques,
L’'Hébpital’s
Rule,
and
Improper
Integrals
2
g
3x
Tx—2
A
B+C
12'x(x~1)(x+1):;
x—1
x+1
3x2=Tx
—2=Ax*~
1)
+
Bx(x
+
1)
+
Cx{x
—
1)
Whenx=0,-2=
—A,A
=2
Whenx=1,-6
=2B,B=
—3
Whenx
=
—1,8
=2C,C
=
4.
27,
-
f3"
Eo
i
ndd
PN
J
dx—3f—dx+4f
i—x
=2Injx|
=
3In|x—
1|
+4Injx
+
1|
+
C
xP+12x+12
A
B
G
.
=44
+
B
x(x+2)x—2)
x
x+2
x-2
X2+
12x
+
12
=
A(x
+
2)(x
—
2)
+
Bx(x
—
2)
+
Cx(x
+
2)
Whenx
=
0,12
=
—4A,A
=
—3.
Whenx
=
—2,
-8
=
8B,B=
—1.Whenx
=
2,40
=
8C,C
=
5.
X4
12+
12
1
1
1
f
e
dx-sfx_zdx—fx+2¢x—3fxdx
=5Inlx
—
2|
=
Injx
+
2|
=
3In|x|
+
C
B
—x+3
2+
1
A
B
=T
T
I
=x—1+
+
W
N
e
=
Wrea
Tt
2+
1=Ax
—
1)
+
B(x
+
2)
Whenx=
~2,
3=
BA,A
=1
Whenx
=
1B
=385~
1.
5
2
B
|
=%—x+ln|x+2|+ln]x—ll+C=%—x+ln|xz+x~2|+C
i
2
—
4
-
15x
+
5
X+
A
B
|
2
=
2x
+
=2x
+
,
=
=3
Zremar+)
Ftioatiez
x+5=A(x+2)
+
Bx—4)
Whenx
=
4,9
=
64,A
=
2.
Whenx
=
—2,3
=
—6B,
B
=
—1.
2x3—4x—15x+5dx
2_1/2
x2—2x—8
x=4
x+2
=xz+%1n‘x74t
7%ln|x+2|
€
5
2t2,
.
A
B
AP
t2-1
A
B
C
“x(x—4)
x-4
x
ToxAx+
1)
x
xz
x+1
x+2=Ax+B(x—4)
4x2
+
2x
—
1
=
Ax(x
+
1)
+
B(x
+
1)
+
Cx?
When
x
=
4,6
=
44,A
=
3.
Whenx
=0,B=—1.Whenx=
~1,C
=
1.
Whenx
=
0,2
=
—4B,B
=
—3.
Whenx
=
1,4
=
3.
(4x2
+
20—
1
31
1
xv2
o
([32_172),
f
P
dx—f[;‘;*,(+1]dx
x*
—
4x
x—4
%
1
=%ln]x—4|—%1n|x|+c
i
3ln|x|+x+ln]x+1]+c
l+
lajx?
+
%*|
+
€
x
Section
7.5
Partial
Fractions
139
2x—3
A
B
22—
]
A
Bx+C
4
=
+
;
=L
275
W1
a1
17
Bomr
D
2T
e
2x—3=Ax—-1)+8B
x2=1=Ax>+
1)
+
(Bx
+
O)x
Whenx
=
1,B=
—1.
Whenx
=
0,4
=
2.
Whenx
=0,A
=
—1.When
x=1,0=
-2+
B
+
C.
|
Whenx=—-1,0=
-2+
B+
C.
Solving
these
ation
haveA
=
—-1,B=2,C
=0.
(X*
l)zdx
J-[
G
1)2][&
equations
we
have
22
—1
1
2x
=]
-dx+
|
5=—di
:21n[,x—]|+xll+c
fx3+xdx
fxdx
jx2+1d‘
=lIn|x?
+
1]
=
Injx|
+
C
:lnfi_l‘+0
x
2
x
A
Bx+C
T-DE2
x4
x—1
2+
x+1
x=AxZ+x+
1)+
Bx+
Ok
—1)
Whenx
=1,1
=3A
Whenx=0,0=4
—
C.Whenx=—1,—1=A
+
2B
—
2C.
Solving
these
equations
we
have
Lp="tc=1t
[
1
[
2c+1
3
1
:EUdex~5
x2+x+1d"+Ej[x+(1/2)]2+(3/4)d"]
+
=
%[ln|x~
1]
—%ln[)cZ
+x+
1]+
fiarc(an(h—l>:|
+C
2
A
B
Cx+
D
.
=
+
u
xt=2x*—-8
x—-2
x+2
x2+2
2=
Alx
+
2)(x2
+2)
+
B(x
—
2)(x2
+
2)
+
(Cx
+
D)(x
+
2)(x
—
2)
When
x
=
2,4
=
24A.
Whenx
=
—2,4
=
—24B.
Whenx
=
0,0
=
44
—
4B
—
4D,
and
when
x
=
1,
1
=94
—
3B
—
3C
—
3D.
Solving
these
equations
we
have
A
=
§,B
=
—},C
=
0,D
=
i
x2
1
1
1
1
jx“—?.fl*8k76[jx—2dxvfx+2dx+2fxz+2dx]
=2
X
x+2‘
+
Zarctanfi]
&€
22+x+8_Ax+B
Cx+D
2
(2+42
x2+4
(x2+4p
27+
x+8=(Ax
+
B)x2+4)
+Cx+
D
=Ax*
+
Bx?
+
(44
+
O)x
+
(4B
+
D)
By
equating
the
coefficients
of
like
terms
we
have
A
=
0,B
=
2,44
+
C=
1,4B
+
D
=
8.
Solving
these
equations
we
have
=0,B=2,C=1,D=0.
212+x+8
=2
(x?
+
42
B
2+4
(x1+4)2
arctan2
(2—+4)
C
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
140
Chapter
7
Integration
Techniques, L'Hépital’s
Rule,
and
Improper
Integrals
53
x
__A
B
Cx+D
T
-
D@+
D@xZ+
1)
22—
1
2+
1
a2+l
x=AQx
+
1)(4x?
+
1)
+
B2x
—
1)(4x?
+
1)
+
(Cx
+
D)(2x
—
1)2x
+
1)
Whenx
=
3,3
=
44.
Whenx
=
~4,
—1
=
—4B
Whenx
=
0,0
=4
—
B
—
D,and
whenx
=
1,
1
=
15A
+
SB
+
3C
+
3D.
Solving
these
equations
we
have
A
=
%,B
=
3,
C=
—l
,D
=0
fléx
=14
U’Zx—ldx
j2x+l
J4x2x+1d"]
:16
%I‘”Jrc
x2—4x+7
_
A
Bx+
C
2,
(+
D2
—2x+3)
x+1
x*-2c+3
X4+
T7=A"-2x+3)+
Bx
+
O)x
+
1)
Whenx
=
—1,12
=
6A.
Whenx
=
0,7
=
34
+
C.
Whenx
=
1,4
=
24
+
2B
+
2C.
Solving
these
equations
we
have
A=2,B=-1,C=1.
22
—dxt
7
1
=%+
1
Jx’—x1+x+3dx‘2fx+ldx+J-x172x+3dx
=2lnjx
+
1]
—%1n|x2——
2x+3|
+
C
%2
45
_
A
Bx+.¢
x+1DE2—2x+3)
x+1
x2—2x+3
A5
=AR2
-2
+3)
+
Bx+
O
+
1)
25.
=(A+Bx2+(-2A+
B+
COx+
(3A
+
)
Whenx
=
—1,A
=
1.
By
equating
coefficients
of
like
terms,
we
have
A
+
B
=1,
=24
+
B+
C=0,3A
+
C
=
5.
Solving
these
equations
we
have
A
=
1,B
=
0,C
=
2.
x5
1
1
J:fi—fl+)c+3dx_J’x+ld)(-i—zf(x—1)24r2d)c
=lnjx+
1|
+
flarctan(x‘;il)
+C
x*+x+3
Ax+B
Cx+D
3
A
B
.
=
+
4
=
T
E
s
A
P
T
A
Ne
D
malties
X2+
x+3=Ax+B)(2+3)+Cx+
D
3=A(x+2)
+B2x+
1)
=Ax*
+
Bx2
+
(3A
+
O)x
+
(3B
+
D)
Whenx
=
—5,A
=2
Whenx
=
—2,B
=
—
By
equating
coefficients
of
like
terms,
we
have
A
=
0,
dr
=
w-
[y
B
=1,34A
+
C=1,3B
+
D
=
3.
Solving
these
equations
o
2x2
+
5x
+
27
b
2x
+
1
0x+2x
wehaveA=0,B=1,C=1,D=0.
1
s
1
=[ln|2x—1!*ln|x+2|:|
X
X
dx:j[
X
:|
0
Frero
P
R
=2
=
Larctz\ni~—1—+C
V3
V32w
+3)
p
Section
7.5
Partial
Fractions
141
x—1
A
B
c
e
=
S
2
xAx+
1)
x
x1+x+l
)
x—1=Ax(x
+
1)
+
B(x
+
1)
+
Cx?
f'
Whenx
=0,B=
—1.Whenx=—1,C=
-2
Whenx=1,0=24
+
2B
+
C.
Solving
these
equations
we
have
A
=
2,
B=-1,C=-2
P
x-1
f,xl(x%—l)
f,xdx
J:
dx—Z
s
=
[21n|x|
gl
2Infx
+
1|]
X
“
1
5
+1]
X
=2
x
x4
1
5
4
—21n§—5
x+
1
*é+Bx+C
Txx24+
1)
x
x2+1
x+1=AK*+
1)+
(Bx
+
O)x
Whenx
=
0,A
=1.Whenx=1,2=24A+
B+
C.
Whenx=—-1,0=24
+
B—
C.
Solving
these
equations
we
have
A=1,B=-1,C=1.
2
2
Xt
1
1
fx(xz+1)dx
f
Pl
fxz
ldx+J;x2+ldx
2
=
[lnlx|
=
%ln(xZ
+1)
+
arctanx]
1
1.
8
=
—51n5~4+arctan2
=
0.557
x?—x
2x
+
1
3xdx
9
=
L
=
-3
-
——+
SO'J:)xz+x+ldx
jdx
fxz+x+l
2
fxl—6x+9
3
lns
=3
x—3
€
!
4,0):
3In|4
-
3|
-
:[x—ln]xz+x+
1]:|0
“9
ol
|
=1-I3
J
-6
10
x—1]
1
2
7
+-+
-
+
x
|
Tx
x—1
2-12
€
7
1
-E
C=1=C=2
31n2
142
Chapter
7
Integration
Techniques,
L'Hopital's
Rule,
and
Improper
Integrals
BEE+2
J2
x
1
x3
1
2
i
|
S
e
B
st
i
4.
|
55
dx
=
Sln|x?
—
4]
—
+
33
J
R
dx
5
aretan
RECES)
c
3
J’(_x244)ld"
2lnl):
|
PR
(o]
1
5
1
2
22
1
1
0=—=$+E=
==
4
-In5—--+C=4
C=——-—
0,1):
0
¥
C=1=C
T
(3,4)
2ln
5
c
=
3
2lnS
3
8
-3
a
8
8
[
-4
-2
2~
2%
+3
+
1
2
35.
XL,ZX—(L\'
=Inlx
-
2|
+
-]-ln|x1
+&
4
1|
—
fiarclan(L)
+C
xd-xtox—2
2
<3
]
(3,
10)
(3,
10):
0+llnl3
—
fiarclanl—wL
C=10=C=
10~11n13
+
fi'\rctani
$
H
>
fi
2
a
fi
-3
6
B3
x(2x
—
9)
1
10
|
e
dx
=
-2|
+
+
+
36.
Jx3-‘6xz+12x*8dx
21Injx
—
2|
=
€
(3,2:0+1+5+C=2=C=—4
G
10
10
)
P—xt2
1
=2
37.
dex:
—arctanx
+
Injx
=
1|
+
C
38.
J’.¥2744X—41flx+2
+C
(2,6):
—arctan2
+
0
+
C
=
6=>C
=
6
+
arctan
2
(6,
4):
lln£‘+C=4:>C:4flln~l—:4+lan
2
"8
3"
2
10
—\\\
@6
10
s
.
-2
5
(6,4)
10
10
2
3
39.
Letu
=
cosx
du
=
sinxdx.
40.
Letu
=
cosx,
du
=
sinxdx.
etk
A
B
1
_A__B
wu—1)
w
w—1
ww+1)
w
w4+l
1=A(u—
1)+
Bu
1
=A(u+
1)
+
Bu
Whenu
=
0,A
=
—1.Whenu
=
1,B=1,u
=
cosx,
Whenu
=
0,A
=
1.
Whenu
=
—1,B=
—1,u=cosx.
du
=
—sin
x
dx.
du
=
—sin
dx.
sin
x
1
sin
x
1
x
=~
d
=
-
Jcos
x(cos
x
—
1)[1\
[u(u
ST
jcosx
+
coslxdx
fu(tz
+
l)dll
=
l1[11—
—lvdu
=
!
du
—
lclu
u
u—1
u+
1
u
=lnfu|
—Inju—1]
+C
=Inlu
+
1|
=
Inju|
+
C
+
=
+C
="
1‘+C
-1
u
_
cos
x
‘+C
_
cosx+l’+c
cosx
—
1
€os
x
T
=1In|l1
+
secx|
+
C
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Section
7.5
Partial
Fractions
3
cosx
1
1
A
B
3
=
i
=24+
=
4=
.
du
=
sec?
4
jsin2x+sinx-2fl
3fu1+u—2d“
42,
WD)
et
ur
u
=tanx,
du
=
sec’
xdx
-
=
A+
1)
+
—n
+;+C
1=A(u+
1)+
Bu
Whenu
=
0,A
=
1.
|
—1
+
sinx
Whenu
=
—-1,1=
-B=>B
=
—1.
n
"
2
+
sinx
J»
et
v
de
=J’
1
W
(From
Exercise
9
with
u
=
sin
x,
du
=
cos
x
dx)
tan
x(tan
x
+
1)
ulu
+
1)
1
1
_J’(u
u+l)du
=Infu|
—Infu
+
1|
+
C
_
u
—lnu+1
+C
tan
x
-
’tanxi—l
4
43.
Letu
=
e,
du
=
e*dx.
1
A
B
G-Du+d
u-1'u+a
1=A(+4)
+
Bu—
1)
Whenu
=
1,A
=
%
Whenu
=
—4,B
=
~
u
=
&5,
du
=
e*dx.
e*
1
I(e"—l)(e‘+4)dx:f(u—l)(u+4)du
1
1
1
-flmdu-fmd“)
1
ju—1
_gln1u+4’+c
1
fer—1
75'"je*+4‘+c
4.
Letu
=
e,
du
=
e*dx.
1
A
Bu+
C
(ul+1)(u—l):u—l
W+
1
1
=AW
+
1)+
(Bu+
O~
1)
Whenu
=
1,A
=
%
Whenu=0,1=A—-C.
Whenu
=
—1,1
=
24
+
2B
—
2C.
Solving
these
equations
we
have
A
=
4,
B
=
—-%,
C=
—']i,
u
=
e,
du
=
e*dx.
er
1
f(ez:+1)(ex-
1)“=J(u2+
D=
D
1
1
u+1
=E(fiu—1d”_fu2+1d“>
l(
1
)
=
—
G
ez
-
+
7
Inju
—
1|
2ln|u
+
1|
—arctanu
|
+
C
=%(21n|e"—
1|
=
Infe?
+
1]
—
2
arctan
e?)
+
C
144
Chapter
7
Integration
Techniques,
L'Hépital’s
Rule,
and
Improper
Integrals
1
A
B
45'x(a+bx)_;+a+bx
1
=
Ala
+
bx)
+
Bx
Whenx
=
0,1
=aA=A
=
1/a.
Whenx
=
—a/b,1
=
—(a/b)B
=B
=
—b/a.
i
U1
b
fx(a+bx)dx7aJ’<x
a+bx)dx
=
%(ln{x[
~Inja
+
bx|)
+
C
=
gl
‘+c
a
|a+
bx
%
A
B
.
=
+
4
(a+bx)>
a+bx
(a+bx)?
x=Ala
+
bx)
+
B
Whenx
=
—a/b,B
=
—a/b.
Whenx
=0,0=aA
+
B
=
A
=
1/b.
x
_
1/b
*a/b)
J(a+bx)zfl7j(a+bx+(a+bx)2
ax
1
1
a
1
-;J‘aflzxdx_zj(awvc)?dx
=L
af
1
=
Inja
+
bx|
+
bz(a
=
bx)
$4€
1
a
=
fi(a_rb;
+
Inla
+
bxf)
+C
3
49.A:f
1
dx
=3
i
x(x+
1)
Matches
(c)
¥
ax
\
e
51.
(a)
V=
WJ:)
(;-—2
T
l)
dx
=
47
(]—“(xz
=
])zdx
iR
1
=
411—J:]
(-‘—-xl
1
—-—(X2
e
l)z)dx
1
=
477[arctan
X
§<arctan
x+
x
3
=
ZW[arclanx
-
2—]
=
277|:
x*+
1o
—CONTINUED—
x
Pl
|
a+x
1=
=Ala
+
x)
+
Bla
—
x)
=a,A=1/2a.
Whenx
=
—a,B
=
1/2a.
1
1
1
1
==
+
faz—xzdx
2a
(a~x
a+x)dx
=
-l—(*ln|a
—
x|
+lnja+x])
+
C
2a
1.
la+x
=1
+
2a
—x
€
1
A
B
C
48'x2(a+bx)7x+x2
a
+
bx
1
=
Ax(a
+
bx)
+
Bla
+
bx)
+
Cx?
Whenx
=0,1
=Ba
=
B
=
l/a.
Whenx
=
—a/b,
|
=
C(a?/b*)
=
C
=
b*/a’.
Whenx=1,1=(@+bA
+(a+bB+C
=
A=
—b/a?
1
_
—b/a*
1/a
J’xz(a+bx)d’(7f(
x
+x2+
b
1
b
==
—
—+
Znla
+
bx|
+
pa
In|x]
Pl
Inja
+
bx|
+
C
b/a?
)dx
a
+
bx
1
+
———+%Ina
bx+C
ax
a
X
1
b
x
T
e
&
a+b‘+c
14
|4+
x|}
=
[Zx
-
—
ln‘4
=
j
]0
(From
Exercise
46)
i
:67%1117@*2.595
i
-3
-2
-1
1
2
3
(partial
fractions)
3
)]
(trigonometric
substitution)
o
10
arctan
3
—
i]
=
5963