D212_JBT_Task2
pdf
keyboard_arrow_up
School
Western Governors University *
*We aren’t endorsed by this school
Course
D212
Subject
Computer Science
Date
Jun 21, 2024
Type
Pages
14
Uploaded by MajorMouseMaster1147
In [1]:
import
pandas as
pd
from
pandas.api.types import
CategoricalDtype
import
numpy as
np
import
matplotlib.pyplot as
plt
import
seaborn as
sns
from
sklearn.preprocessing import
StandardScaler
from
sklearn.decomposition import
PCA
from
sklearn.model_selection import
train_test_split
from
sklearn.tree import
DecisionTreeClassifier
from
sklearn.metrics import
confusion_matrix
from
sklearn.metrics import
roc_auc_score
from
sklearn.metrics import
roc_curve
from
sklearn.metrics import
accuracy_score
# import warnings filter
from
warnings import
simplefilter
# ignore all future warnings
simplefilter
(
action
=
'ignore'
, category
=
FutureWarning
)
# The CSV's first column is an index and Pandas will duplicate this and create df =
pd
.
read_csv
(
'./medical_clean.csv'
, index_col
=
0
)
In [2]:
# Check data types and count of values
df
.
info
()
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 1 to 10000
Data columns (total 49 columns):
# Column Non-Null Count Dtype --- ------ -------------- ----- 0 Customer_id 10000 non-null object 1 Interaction 10000 non-null object 2 UID 10000 non-null object 3 City 10000 non-null object 4 State 10000 non-null object 5 County 10000 non-null object 6 Zip 10000 non-null int64 7 Lat 10000 non-null float64
8 Lng 10000 non-null float64
9 Population 10000 non-null int64 10 Area 10000 non-null object 11 TimeZone 10000 non-null object 12 Job 10000 non-null object 13 Children 10000 non-null int64 14 Age 10000 non-null int64 15 Income 10000 non-null float64
16 Marital 10000 non-null object 17 Gender 10000 non-null object 18 ReAdmis 10000 non-null object 19 VitD_levels 10000 non-null float64
20 Doc_visits 10000 non-null int64 21 Full_meals_eaten 10000 non-null int64 22 vitD_supp 10000 non-null int64 23 Soft_drink 10000 non-null object 24 Initial_admin 10000 non-null object 25 HighBlood 10000 non-null object 26 Stroke 10000 non-null object 27 Complication_risk 10000 non-null object 28 Overweight 10000 non-null object 29 Arthritis 10000 non-null object 30 Diabetes 10000 non-null object 31 Hyperlipidemia 10000 non-null object 32 BackPain 10000 non-null object 33 Anxiety 10000 non-null object 34 Allergic_rhinitis 10000 non-null object 35 Reflux_esophagitis 10000 non-null object 36 Asthma 10000 non-null object 37 Services 10000 non-null object 38 Initial_days 10000 non-null float64
39 TotalCharge 10000 non-null float64
40 Additional_charges 10000 non-null float64
41 Item1 10000 non-null int64 42 Item2 10000 non-null int64 43 Item3 10000 non-null int64 44 Item4 10000 non-null int64 45 Item5 10000 non-null int64 46 Item6 10000 non-null int64 47 Item7 10000 non-null int64 48 Item8 10000 non-null int64 dtypes: float64(7), int64(15), object(27)
memory usage: 3.8+ MB
In [3]:
# Data Cleaning Code from D206
# Replace the city-specific values with the standard time zones
df
.
TimeZone
.
replace
(
{
'America/Chicago' : 'America - Central'
,
'America/New_York' : 'America - Eastern'
,
'America/Los_Angeles' : 'America - Pacific'
,
'America/Denver' : 'America - Mountain'
,
'America/Detroit' : 'America - Eastern'
,
'America/Indiana/Indianapolis' : 'America - Eastern'
,
'America/Phoenix' : 'America - Mountain'
,
'America/Boise' : 'America - Mountain'
,
'America/Anchorage' : 'America - Alaskan'
,
'America/Puerto_Rico' : 'America - Atlantic'
,
'Pacific/Honolulu' : 'America - Hawaii-Aleutian'
,
'America/Menominee' : 'America - Central'
,
'America/Nome' : 'America - Alaskan'
,
'America/Indiana/Vincennes' : 'America - Eastern'
,
'America/Sitka' : 'America - Alaskan'
,
'America/Kentucky/Louisville' : 'America - Eastern'
,
'America/Toronto' : 'America - Eastern'
,
'America/Indiana/Tell_City' : 'America - Central'
,
'America/Indiana/Marengo' : 'America - Eastern'
,
'America/North_Dakota/Beulah' : 'America - Central'
,
'America/Indiana/Winamac' : 'America - Eastern'
,
'America/Indiana/Vevay' : 'America - Eastern'
,
'America/North_Dakota/New_Salem' : 'America - Central'
,
'America/Indiana/Knox' : 'America - Eastern'
,
'America/Yakutat' : 'America - Alaskan'
,
'America/Adak' : 'America - Hawaii-Aleutian'
}, inplace
=
True
)
# Convert the column type of zip from int to string then front fill with zeroes
df
[
'Zip'
] =
df
[
'Zip'
]
.
astype
(
"str"
)
.
str
.
zfill
(
5
)
# Convert column that are string object to category
df
[
"TimeZone"
] =
df
[
"TimeZone"
]
.
astype
(
"category"
)
df
[
"Area"
] =
df
[
"Area"
]
.
astype
(
"category"
)
df
[
"Marital"
] =
df
[
"Marital"
]
.
astype
(
"category"
)
df
[
"Gender"
] =
df
[
"Gender"
]
.
astype
(
"category"
)
df
[
"Initial_admin"
] =
df
[
"Initial_admin"
]
.
astype
(
"category"
)
df
[
"Complication_risk"
] =
df
[
"Complication_risk"
]
.
astype
(
"category"
)
df
[
"Services"
] =
df
[
"Services"
]
.
astype
(
"category"
)
# Convert column that are float to integer
df
[
"Initial_days"
] =
df
[
"Initial_days"
]
.
astype
(
"int64"
)
# Recast object to boolean by changing the Yes to 1 and No to 0
bool_mapping =
{
"Yes" : 1
, "No" : 0
}
# Convert column that are string to boolean
df
[
"ReAdmis"
] =
df
[
"ReAdmis"
]
.
map
(
bool_mapping
)
df
[
"Soft_drink"
] =
df
[
"Soft_drink"
]
.
map
(
bool_mapping
)
df
[
"HighBlood"
] =
df
[
"HighBlood"
]
.
map
(
bool_mapping
)
df
[
"Stroke"
] =
df
[
"Stroke"
]
.
map
(
bool_mapping
)
df
[
"Overweight"
] =
df
[
"Overweight"
]
.
map
(
bool_mapping
)
df
[
"Arthritis"
] =
df
[
"Arthritis"
]
.
map
(
bool_mapping
)
df
[
"Diabetes"
] =
df
[
"Diabetes"
]
.
map
(
bool_mapping
)
df
[
"Hyperlipidemia"
] =
df
[
"Hyperlipidemia"
]
.
map
(
bool_mapping
)
df
[
"BackPain"
] =
df
[
"BackPain"
]
.
map
(
bool_mapping
)
df
[
"Anxiety"
] =
df
[
"Anxiety"
]
.
map
(
bool_mapping
)
df
[
"Allergic_rhinitis"
] =
df
[
"Allergic_rhinitis"
]
.
map
(
bool_mapping
)
df
[
"Reflux_esophagitis"
] =
df
[
"Reflux_esophagitis"
]
.
map
(
bool_mapping
)
df
[
"Asthma"
] =
df
[
"Asthma"
]
.
map
(
bool_mapping
)
# Round the decimal places to 2 from 6
df
[
"TotalCharge"
] =
df
.
TotalCharge
.
round
(
2
)
df
[
"Additional_charges"
] =
df
.
Additional_charges
.
round
(
2
)
df
[
"Income"
] =
df
.
Income
.
round
(
2
)
df
[
"VitD_levels"
] =
df
.
VitD_levels
.
round
(
2
)
# Establish map for reversing survey questions to reflect a truth where 1 < 8
survey_score =
{
1
: 8
, 2
: 7
, 3 : 6
, 4
: 5
, 5
: 4
, 6
: 3
, 7 : 2
, 8 : 1
}
# Convert column that are int to ordered category. Need to reassign int to stri
df
[
"Item1"
] =
df
[
"Item1"
]
.
map
(
survey_score
)
df
[
"Item1"
] =
df
[
"Item1"
]
.
astype
(
'float64'
)
df
[
"Item2"
] =
df
[
"Item2"
]
.
map
(
survey_score
)
df
[
"Item2"
] =
df
[
"Item2"
]
.
astype
(
'float64'
)
df
[
"Item3"
] =
df
[
"Item3"
]
.
map
(
survey_score
)
df
[
"Item3"
] =
df
[
"Item3"
]
.
astype
(
'float64'
)
df
[
"Item4"
] =
df
[
"Item4"
]
.
map
(
survey_score
)
df
[
"Item4"
] =
df
[
"Item4"
]
.
astype
(
'float64'
)
df
[
"Item5"
] =
df
[
"Item5"
]
.
map
(
survey_score
)
df
[
"Item5"
] =
df
[
"Item5"
]
.
astype
(
'float64'
)
df
[
"Item6"
] =
df
[
"Item6"
]
.
map
(
survey_score
)
df
[
"Item6"
] =
df
[
"Item6"
]
.
astype
(
'float64'
)
df
[
"Item7"
] =
df
[
"Item7"
]
.
map
(
survey_score
)
df
[
"Item7"
] =
df
[
"Item7"
]
.
astype
(
'float64'
)
df
[
"Item8"
] =
df
[
"Item8"
]
.
map
(
survey_score
)
df
[
"Item8"
] =
df
[
"Item8"
]
.
astype
(
'float64'
)
# Replace header names with a snake case convention format
snake_case_column =
[
'customer_id'
, 'interaction'
, 'uid'
, 'city'
, 'state'
, 'county'
, 'zip_code'
,
'latitude'
, 'longitude'
, 'population'
, 'area_type'
, 'timezone'
, 'job'
, 'chi
'income'
, 'marital_status'
, 'gender'
, 'readmission'
, 'vit_d_level'
,
'doctor_visits'
, 'num_full_meals'
, 'vit_d_supp'
, 'soft_drink'
, 'initial_adm
'stroke'
, 'complication_risk'
, 'overweight'
, 'arthritis'
, 'diabetes'
, 'hype
'anxiety'
, 'allergic_rhinitis'
, 'reflux_esophagitis'
, 'asthma'
, 'service_ty
'daily_charge'
, 'additional_charge'
, 'surv1_timely_admission'
, 'surv2_timel
'surv3_timely_visits'
, 'surv4_reliability'
, 'surv5_options'
, 'surv6_hours_o
'surv7_courteous_staff'
, 'surv8_active_listening_dr'
]
df
.
set_axis
(
snake_case_column
, axis
=
1
, inplace
=
True
)
#Visually inspecting dataset
df
.
info
()
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 1 to 10000
Data columns (total 49 columns):
# Column Non-Null Count Dtype --- ------ -------------- ----- 0 customer_id 10000 non-null object 1 interaction 10000 non-null object 2 uid 10000 non-null object 3 city 10000 non-null object 4 state 10000 non-null object 5 county 10000 non-null object 6 zip_code 10000 non-null object 7 latitude 10000 non-null float64 8 longitude 10000 non-null float64 9 population 10000 non-null int64 10 area_type 10000 non-null category
11 timezone 10000 non-null category
12 job 10000 non-null object 13 children 10000 non-null int64 14 age 10000 non-null int64 15 income 10000 non-null float64 16 marital_status 10000 non-null category
17 gender 10000 non-null category
18 readmission 10000 non-null int64 19 vit_d_level 10000 non-null float64 20 doctor_visits 10000 non-null int64 21 num_full_meals 10000 non-null int64 22 vit_d_supp 10000 non-null int64 23 soft_drink 10000 non-null int64 24 initial_admin 10000 non-null category
25 highblood 10000 non-null int64 26 stroke 10000 non-null int64 27 complication_risk 10000 non-null category
28 overweight 10000 non-null int64 29 arthritis 10000 non-null int64 30 diabetes 10000 non-null int64 31 hyperlipidemia 10000 non-null int64 32 back_pain 10000 non-null int64 33 anxiety 10000 non-null int64 34 allergic_rhinitis 10000 non-null int64 35 reflux_esophagitis 10000 non-null int64 36 asthma 10000 non-null int64 37 service_type 10000 non-null category
38 initial_stay 10000 non-null int64 39 daily_charge 10000 non-null float64 40 additional_charge 10000 non-null float64 41 surv1_timely_admission 10000 non-null float64 42 surv2_timely_treatment 10000 non-null float64 43 surv3_timely_visits 10000 non-null float64 44 surv4_reliability 10000 non-null float64 45 surv5_options 10000 non-null float64 46 surv6_hours_of_treatment 10000 non-null float64 47 surv7_courteous_staff 10000 non-null float64 48 surv8_active_listening_dr 10000 non-null float64 dtypes: category(7), float64(14), int64(20), object(8)
memory usage: 3.3+ MB
Verifying if mean is 0 and standard deviation is 1
For column 'age', the mean is 0.0 and the standard deviation is 1.0001.
For column 'income', the mean is 0.0 and the standard deviation is 1.0001.
For column 'vit_d_level', the mean is -0.0 and the standard deviation is 1.000
1.
For column 'doctor_visits', the mean is 0.0 and the standard deviation is 1.00
01.
For column 'num_full_meals', the mean is 0.0 and the standard deviation is 1.0
001.
For column 'vit_d_supp', the mean is -0.0 and the standard deviation is 1.000
1.
For column 'initial_stay', the mean is -0.0 and the standard deviation is 1.00
01.
For column 'daily_charge', the mean is 0.0 and the standard deviation is 1.000
1.
For column 'additional_charge', the mean is 0.0 and the standard deviation is 1.0001.
In [4]:
# Create X dataframe with variables we are interested in
X =
df
[[
"age"
, "income"
, "vit_d_level"
, "doctor_visits"
, "num_full_meals"
, "vit_d_supp"
, "initial_stay"
, "daily_charge"
, "additi
# Create list of column headers
X_cols =
list
(
X
.
columns
)
# Set y to as back pain we are interested in predicting
y =
df
[
"back_pain"
]
In [5]:
# Create array of X values that are standardized
X_std =
StandardScaler
()
.
fit_transform
(
df
[[
"age"
, "income"
, "vit_d_level"
, "doc
"num_full_meals"
, "vit_d_supp"
, "initial_stay"
, "daily_charge"
, "additi
# Verify standardization
print
(
f"Verifying if mean is 0 and standard deviation is 1"
)
# Stick the standardized values into a temporary dataframe that we'll use for v
X_std_df =
pd
.
DataFrame
(
X_std
, columns
=
X_cols
)
# Print out the mean and the standard deviation for each of the 13 columns that
for
column in
X_cols
:
col_mean =
round
(
X_std_df
.
loc
[:,
column
]
.
mean
(), 4
)
col_std =
round
(
X_std_df
.
loc
[:,
column
]
.
std
(), 4
)
print
(
f"For column '{
column
}', the mean is {
col_mean
} and the standard devi
In [6]:
# Define colors for the conditional formatting that we'll apply to our covarian
def
highlight_cells (
val
):
if
val >
0.9
:
color =
'red'
else
:
color =
''
return
f"background: {
color
}"
# Generate covariance_matrix (much quicker and more precise that an SNS pairplo
covariance_matrix =
pd
.
DataFrame
.
cov
(
X_std_df
)
# Apply the styling defined in the above defined function, very closely correll
covariance_matrix
.
style
.
applymap
(
highlight_cells
)
Verifying if mean is 0 and standard deviation is 1
For column 'age', the mean is 0.0 and the standard deviation is 1.0001.
For column 'income', the mean is 0.0 and the standard deviation is 1.0001.
For column 'vit_d_level', the mean is -0.0 and the standard deviation is 1.000
1.
For column 'doctor_visits', the mean is 0.0 and the standard deviation is 1.00
01.
For column 'num_full_meals', the mean is 0.0 and the standard deviation is 1.0
001.
For column 'vit_d_supp', the mean is -0.0 and the standard deviation is 1.000
1.
For column 'initial_stay', the mean is -0.0 and the standard deviation is 1.00
01.
For column 'additional_charge', the mean is 0.0 and the standard deviation is 1.0001.
Out[6]:
In [7]:
# Re-create X and X_cols to reflect this change
X =
df
[[
"age"
, "income"
, "vit_d_level"
, "doctor_visits"
, "num_full_meals"
, "vit_d_supp"
, "initial_stay"
, "additional_charge"
]]
.
c
X_cols =
list
(
X
.
columns
)
# Re-create array of standardized X values, omitting 'daily_charge'
X_std =
StandardScaler
()
.
fit_transform
(
df
[[
"age"
, "income"
, "vit_d_level"
, "doc
"num_full_meals"
, "vit_d_supp"
, "initial_stay"
, "additional_charge"
]]
.
c
# Re-verify that everything has been standardized to mean of 0, standard deviat
print
(
f"Verifying if mean is 0 and standard deviation is 1"
)
# Stick the standardized values into a temporary dataframe that we'll use for v
X_std_df =
pd
.
DataFrame
(
X_std
, columns
=
X_cols
)
# Print out the mean and the standard deviation for each of the 13 columns that
for
column in
X_cols
:
col_mean =
round
(
X_std_df
.
loc
[:,
column
]
.
mean
(), 4
)
col_std =
round
(
X_std_df
.
loc
[:,
column
]
.
std
(), 4
)
print
(
f"For column '{
column
}', the mean is {
col_mean
} and the standard devi
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
fit_transform
X_pca
In [8]:
# Save dataframe to CSV, ignore index (if included, this will create an additio
X_std_df
.
to_csv
(
'task2_clean.csv'
, index
=
False
)
In [9]:
# X_std is the arrays created by the StandardScaler for us to perform PCA with
# Instantiate our PCA object
pca =
PCA
(
n_components =
8
, random_state =
369
)
# Fit the PCA to the standardized X data, then transform
X_pca =
pca
.
fit_transform
(
X_std
)
# Generate the matrix of PCA loadings X_pca_loadings =
pd
.
DataFrame
(
pca
.
components_
.
T
, columns =
[
"PC1"
, "PC2"
, "PC3"
, "PC4"
, "PC5"
, "PC
index =
X_cols
)
X_pca_loadings
Out[9]:
In [10]:
# Generate the 8 PC's variance
print
(
f"These 8 principal components explain {
round
(
sum
(
pca
.
explained_variance_
# Break this down to show the individual contribution of each PC to the whole
print
(
f"The contribution of each principal component to the total can be seen h
These 8 principal components explain 100.0% of variance.
The contribution of each principal component to the total can be seen here:
For PC1, the contribution is 21.484%
For PC2, the contribution is 13.082%
For PC3, the contribution is 12.779%
For PC4, the contribution is 12.583%
For PC5, the contribution is 12.251%
For PC6, the contribution is 12.176%
For PC7, the contribution is 12.108%
For PC8, the contribution is 3.537%
pc_contributions =
list
(
pca
.
explained_variance_ratio_
)
pc_names =
list
(
X_pca_loadings
.
columns
)
for
i in
range
(
len
(
pc_names
)):
print
(
f"For {
pc_names
[
i
]
}, the contribution is {
round
(
pc_contributions
[
i
] *
In [11]:
# Use Scree Plot
plt
.
plot
(
np
.
cumsum
(
pca
.
explained_variance_ratio_
))
plt
.
xlabel
(
"Number of Principal Components"
)
plt
.
ylabel
(
"Percentage of Explained Variance"
)
plt
.
show
();
final_pca
The amount of variance accounted for by each principal component can be seen h
ere:
For PC1, the contribution is 21.484%
For PC2, the contribution is 13.082%
For PC3, the contribution is 12.779%
For PC4, the contribution is 12.583%
For PC5, the contribution is 12.251%
For PC6, the contribution is 12.176%
For PC7, the contribution is 12.108%
In [12]:
#Rerun PCA
final_pca =
PCA
(
n_components =
7
, random_state =
369
)
# Fit the PCA to the standardized X data, then transform
final_pca
.
fit
(
X_std
)
final_X_pca =
final_pca
.
transform
(
X_std
)
# Generate PCA loadings for the final_pca
final_X_pca_loadings =
pd
.
DataFrame
(
final_pca
.
components_
.
T
, columns =
[
"PC1"
, "PC2"
, "PC3"
, "PC4"
, "PC5"
, "PC
index =
X_cols
)
final_X_pca_loadings
Out[12]:
In [13]:
# Show the individual contribution of each PC to the whole
print
(
f"The amount of variance accounted for by each principal component can be
# Doing this in a pretty way, rather than printing an unlabelled list of explai
pc_contributions =
list
(
final_pca
.
explained_variance_ratio_
)
pc_names =
list
(
final_X_pca_loadings
.
columns
)
for
i in
range
(
len
(
pc_names
)):
print
(
f"For {
pc_names
[
i
]
}, the contribution is {
round
(
pc_contributions
[
i
] *
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
These 7 principal components explain 96.463% of variance in the data.
The shape of the X_train set is: (8000, 7)
The shape of the X_test set is: (2000, 7)
Decision tree accuracy: 0.518
The confusion matrix for this Decision Tree model:
Predicted No Back Pain | Predicted Back Pain
[675 502] Actual No Back Pain
[462 361] Actual Back Pain
In [14]:
print
(
f"These 7 principal components explain {
round
(
sum
(
final_pca
.
explained_va
In [15]:
# Split the data into train and test sets, 80% train, 20% test, use stratify to
X_train
, X_test
, y_train
, y_test =
train_test_split
(
final_X_pca
, y
, train_size # Verify that each of the X sets are shaped as expected, to reflect the 11 PC's
print
(
f"The shape of the X_train set is: {
X_train
.
shape
}"
)
print
(
f"The shape of the X_test set is: {
X_test
.
shape
}"
)
In [16]:
# Instantiate our classification model
classification_model =
DecisionTreeClassifier
(
random_state
=
369
)
.
fit
(
X_train
, y_
y_predictions =
classification_model
.
predict
(
X_test
)
# Generate accuracy report for this model
test_accuracy =
accuracy_score
(
y_test
, y_predictions
)
print
(
f'Decision tree accuracy: {
test_accuracy
}'
) # Predict the test set probabilities of the positive class
y_pred_proba =
classification_model
.
predict_proba
(
X_test
)[:,
1
]
# Generate Confusion Matrix
final_matrix =
confusion_matrix
(
y_test
, y_predictions
)
print
(
"\nThe confusion matrix for this Decision Tree model:"
)
print
(
"Predicted No Back Pain | Predicted Back Pain"
)
print
(
f" {
final_matrix
[
0
]
} Actual No Back Pain"
)
print
(
f" {
final_matrix
[
1
]
} Actual Back Pain"
)
Related Documents
Recommended textbooks for you
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080195/9781305080195_smallCoverImage.gif)
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337102087/9781337102087_smallCoverImage.gif)
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251038/9781305251038_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305503922/9781305503922_smallCoverImage.gif)
New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133187844/9781133187844_smallCoverImage.gif)
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Recommended textbooks for you
- Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning
- New Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningCOMPREHENSIVE MICROSOFT OFFICE 365 EXCEComputer ScienceISBN:9780357392676Author:FREUND, StevenPublisher:CENGAGE LC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080195/9781305080195_smallCoverImage.gif)
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337102087/9781337102087_smallCoverImage.gif)
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251038/9781305251038_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305503922/9781305503922_smallCoverImage.gif)
New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133187844/9781133187844_smallCoverImage.gif)
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr