Moon Lab

docx

School

University of Virginia *

*We aren’t endorsed by this school

Course

MISC

Subject

Astronomy

Date

Apr 3, 2024

Type

docx

Pages

5

Uploaded by UltraGoose3843

Report
Moon Lab Part I: Background Material Answer the following questions after reviewing the background pages for the simulator. Page 1 – Introduction to Moon Phases Is there a dark side of the moon? (Note: this question can be effectively answered either yes or no, so it is important to explain your reasoning.) How long does it take the moon to complete one cycle of phases, in days? The moon takes about 29.5 days to complete one cycle of phases If the moon is full today, what phase do you expect it to be at in a week? How about one month later? Many words in astronomy also have non-astronomical uses as well. Using your knowledge of how the terms on the left are used in astronomy match them with the non- astronomical uses on the right. waning convex, rounded -- also hunch-backed, having a hump gibbous to increase in size, quantity, volume, intensity, etc. waxing decrease in magnitude, importance, brilliancy, intensity, etc. The following sketches of the moon's appearance were made over about four weeks. Identify the phases and put them in the correct numerical order. One is labeled for you. Picture Orde r Phase Picture Order Phase A D B 1 waning gibbous E C F Page 2 – Introduction to Moon Phases From the perspective of an observer above the North Pole, the moon moves clockwise / counter-clockwise (circle) in its orbit around the earth.
In the diagram below the sun's light is coming in from the right. The moon's location is marked at several points on its orbit. These are the points the moon was at when the sketches above were drawn. Identify each position with the letter of the corresponding sketch. Page 3 – The Time of Day Use the interactive diagram at the bottom of the page to determine the direction of the earth’s rotation when viewed from above the North Pole. (Hint: rotate the observer – the stickfigure – to the noontime position, then sunset position, then midnight position, and finally back to sunrise position. The earth has made one complete rotation and the observer has experience one daily (diurnal) cycle of day and night.) When viewed from above the North Pole, does the earth rotate clockwise or counter-clockwise? Page 4 – Rising and Setting When the moon crosses the western side of the horizon plane it is rising / setting (circle). When it crosses the eastern side of the horizon plane it is rising / setting (circle). Page 5 – The Horizon Diagram Describe the location of the moon in the sky of the horizon diagram at bottom. Use direction words (like north, west, etc.) and estimate its altitude in degrees. Page 6 – The Witness and the Detective If we know the moon's position in the sky and its phase, we can estimate the . In general, knowing any two of the following three things allows us to estimate the third: 1. moon's position in the sky 2. 3. Part II: Visualizing Phases Question 1: We can determine the appearance of the moon based on the orientation of the moon and sun with a simple heuristic. In the figure below, bisect the moon twice . a. Draw a line (perpendicular to the direction of sunlight) that shows the half of the entire moon that is illuminated and shade the shadowed region. b. Draw a line (perpendicular to the Earth-moon line) that shows the half of the moon visible for an observer on earth. c. Mark the region that is both visible from earth and illuminated by the sun. That region will be the phase of the moon we on earth see. Moon sunlight Earth We normally draw the phases of the moon with the terminator (the dividing line between light and shadow) from the north pole to the south pole of the moon. This is how the moon would be seen if it were on the observer’s meridian. We can use the drawing above to determine the amount of illumination and whether it is on the left- or right-hand side of the moon. Use the drawing above to draw the appearance of the moon in the box below. Open the Moon Bisector Demo and use the simulator to check your answer to the above problem. Part III: Working with the Lunar Phase Simulator
The items below will help familiarize yourself with the controls and usability features of the simulator. If you have not already done so, launch the NAAP Lunar Phase Simulator The main panel has sunlight, the earth, and moon. The earth and moon can be dragged with the mouse. Below the main panel, there are animation controls. The moon and earth can be dragged. The increment buttons move both the moon and earth by the specified time. The Moon Phase panel shows the current moon phase. Drop down menus will jump to a predefined position. Note that the phases, such as crescent and gibbous, are broader than the particular point chosen by the presets. The Horizon Diagram panel displays the point of view of the observer (and you are a second observer looking down on that observer). The observer’s horizon diagram can be dragged to allow for the most convenient viewing orientation. The sun and moon on the globe can be dragged around. In the Diagram Options panel, the show angle option shows the earth-moon-sun angle. The phases are technically defined in terms of this angle. In the Diagram Options panel, the show lunar landmark option draws a point of reference to more easily observer lunar rotation and revolution. In the Diagram Options panel, the show time tickmarks option displays the time of day of the observer. Earth – Moon – Sun Geometry Question 2: Click on the option labeled show angle – which graphically displays the angle between the direction of the sun and moon. Now drag the moon around the sun to a variety of different locations and note the appearance of the Moon Phase. Describe how the value of the angle correlates with the appearance of the moon. Question 3: Each row on the following table shows diagram of the earth-moon system. For each diagram, find the age of the moon at that position (that is, the time passed since new moon), its phase, and its percent illumination. Finally, make a sketch of its general appearance. You will need to consider the orientation of the sunlight – it is different in each diagram from the orientation in the applet. The first row is completed for you. You may need to rotate your paper and hold it up to the screen to check your answers. Moon Geometry Age Phase Percent Illuminatio n Sketch 11 days, 9 hours Waxing Gibbou s 88%
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Rising, Setting, and Meridian Times When observing the moon one thing we might like to know in advance is when it is visible – what time it sets, rises, and crosses the meridian (or transits). The applet can help find these times. Example 1: What is the meridian crossing (transit) time for a new moon? Move the moon to its new position. Rotate the earth until the moon is centered on the meridian (the observer should be located on the earth directly opposite the moon) . For finding transit times it helps to change the perspective of the horizon diagram (by clicking and dragging on it) so that we are looking straight down on the diagram. Note that the transit time of the new moon is 12:00 PM (noon). Complete the rest of the meridian times in the table below. Rising Meridian Crossing Setting New 12:00 PM Waxing Crescent First Quarter Waxing Gibbous Full 6:00 AM Waning Gibbous Last Quarter Waning Crescent Example 2: What is the setting time for a full moon? First we move the moon to the full position by dragging it, or selecting ‘Full Moon’ in the phase name drop down list. Next, click on and rotate the earth while keeping an eye on the horizon diagram in the lower right
corner. Rotate the earth until the moon just disappears below the western horizon. You should verify that this occurs at 6:00 AM. Complete the rest of the rising and setting times in the table above. Question 4: Describe the relationship between the values of the meridian times and the rising and setting times in your table.