199922-Observing-Light-Pollution-docx
pdf
keyboard_arrow_up
School
University of North Florida *
*We aren’t endorsed by this school
Course
2002L
Subject
Astronomy
Date
Dec 6, 2023
Type
Pages
10
Uploaded by AMAN44444
O
b
ser
v
i
ng
L
i
ght
Pollu
t
ion
B
ig
Idea
:
T
he
w
a
y w
e
vi
e
w
the
n
i
ght
s
ky v
arie
s
greatl
y
due
to
both
manmade
lighting
and
the
natu
r
a
l v
a
ri
at
i
on
i
n
the
br
i
ghtne
ss
of
the
Moon
a
s
it
goe
s
through
pha
s
e
s
.
Goal
:
Y
ou
will
mea
s
ure
the
amount
of
light
pollution
from
a
lo
c
ation
of
y
our
c
hoi
c
e.
Then,
you
will
de
m
on
s
trate
ho
w
the
tota
l
number
of
s
tar
s v
i
s
ible
to
the
e
y
e
i
s
e
s
timated
from
s
ample
s
.
The
s
e
m
ea
s
urement
s
mu
s
t
be
repeat
e
d
at
lea
s
t
three
time
s
to
in
v
e
s
tigate
how
the
night
sky
b
ri
ghtne
ss a
nd
the
number
of
visi
b
l
e
s
tar
s c
hange
when
the
Moon
i
s v
i
s
ible.
R
equirem
en
ts:
●
Th
r
ee
n
i
ght
s
,
at
l
ea
s
t
one
wi
th
and
one
without
bright
Moonlight
(Full
moon
o
cc
ur
s on
J
un
e
3,
2023).
●
Tube
of
k
no
w
n
or
mea
s
ured
le
ngth
(e.g.
paper
towel
tube
mea
s
ured
with
a
ruler
-
print a
ruler if needed
).
Pl
ea
s
e
r
ead
the
ent
i
re
pro
j
e
c
t
before
y
ou
go
out
to
ma
k
e
ob
s
er
v
ation
s
.
It
require
s s
ome
p
r
epa
r
at
i
on,
but
noth
i
ng
d
i
ff
ic
u
l
t.
P
hase
I.
G
l
ob
e
at
N
i
gh
t
Fo
r
th
is
p
r
o
j
e
c
t,
y
ou
will
need
to
ma
ke
ob
s
er
v
ation
s
of
the
night
sky
on
three
different
c
lear
n
i
ght
s
,
at
l
ea
s
t
on
c
e
dur
i
ng
a
n
i
ght
wh
en
the
Moon
i
s v
i
s
ible
and
on
c
e
when
it
i
s
not
v
i
s
ible.
C
hoo
s
e
a
l
o
c
at
i
on
that
is s
afe
and
ea
s
il
y
a
cc
e
ss
ible
and
a
v
oid
being
dire
c
tl
y
near
bright
lig
h
t
s
s
u
c
h
a
s s
t
re
et
l
amp
s
.
I
MP
O
R
T
ANT
:
It
ta
k
e
s
at
l
ea
s
t
10
m
i
n
u
te
s
for
y
our
e
y
e
s
to
full
y
adju
s
t
to
dar
k
ne
ss
(dilate).
Loo
ki
ng
at
a
sc
reen
or
other
li
ght
s
ou
rc
e
will
c
au
s
e
y
our
e
y
e
s
to
re
s
et
(
c
on
s
tri
c
t)
meaning
your
e
y
e
s will
not
be
a
s s
en
si
t
iv
e
and
y
ou
will
not
ma
k
e
reliable
mea
s
urement
s
.
1.
D
e
scri
b
e
the
l
o
c
at
i
on
w
here
y
ou
o
bs
er
v
ed
the
c
on
s
tellation
s
.
U
s
ing
y
our
phone
GPS
o
r
Goog
l
e
Map
s
,
f
i
nd
the
l
ong
i
tude
a
n
d
latitude
and
report
them
below.
Ma
k
e
a
sk
et
c
h
of
t
he
l
o
c
at
i
on
and
i
n
cl
ude
i
t
be
l
o
w
.
D
e
scri
pt
i
on: The location is associated with moderate lighting free from busy roads with impact of
traffic lights.
Long
i
tude,
Lat
i
tude: 32.767796, -96.796739
Sk
et
c
h:
G
l
obe
at
Ni
ght
is
an
i
nternat
i
ona
l
pro
j
e
c
t
to
mea
s
ure
the
impa
c
t
of
light
pollution
b
y
ha
v
ing
“ci
t
iz
en
sci
ent
is
t
s
”
mea
s
ure
the
i
r
l
o
c
a
l
night
sky
brightne
ss
.
2.
R
ead
about
the
effe
c
t
s
of
li
ght
po
l
lution
at
https://www.globeatnight.org/light-pollution.php
.
W
h
ic
h,
i
f
an
y
,
of
the
three
ma
i
n
t
y
pe
s
of
light
pollution
are
pre
s
ent
at
the
lo
c
ation
where
you
a
r
e
m
ak
i
ng
ob
s
er
v
at
i
on
s
?
W
hen
w
e
ob
s
er
v
e
s
tar
s
(
wi
th
our
e
y
es
alone
or
with
opti
c
al
aid
s
u
c
h
a
s
tele
sc
ope
s
),
we
ob
serve
the
ir
b
ri
ghtne
ss
e
s
.
As
tronomer
s
ha
v
e
a
s
omewhat
c
ompli
c
ated
sys
tem
c
alled
s
tellar
“m
agn
i
tudes”
to
de
sc
r
i
be
th
is
br
i
ghtne
ss
.
The
magnitude
sys
tem
wa
s
de
v
eloped
b
y
the
Gr
eek
Hi
ppa
rc
hu
s
,
w
ho
liv
ed
around
150
B
.C.
He
di
v
ided
s
tar
s
into
c
ategorie
s
on
the
ba
s
i
s
of
the
ir
b
ri
ghtne
ss
,
a
ssi
gn
i
ng
"f
i
r
s
t
ran
k
"
to
th
e
brighte
s
t
s
tar
s
and
"s
e
c
ond
ran
k
,
" "
third
ran
k
,
"
and
so on
to
s
u
cc
e
ssiv
e
ly
fa
i
nter
one
s
.
A s
tar'
s
r
a
n
k
ing
ha
s c
ome
to
be
k
nown
a
s
it
s
apparent
magnit
ude
.
Late
r
,
a
s
t
r
onomer
s
made
th
is sys
tem
m
ore
quantitati
v
e,
defining
that
a
differen
c
e
of
fi
v
e
m
agn
i
tude
s
repre
s
ent
s
e
x
a
c
t
ly
100
t
im
e
s
the
differen
c
e
between
two
s
tar
s
'
brightne
ss
e
s
.
T
here
a
r
e
about
f
iv
e
magn
i
tude
s
bet
w
een
th
e
brighte
s
t
and
fainte
s
t
s
tar
s
that
we
c
an
s
ee,
and
th
e
sc
a
l
e
is l
ogar
i
thm
ic wi
th
ea
c
h
“
s
tep”
in
magnitude
repre
s
enting
a
c
hange
in
brightne
ss
b
y a
fa
c
to
r
of
ab
o
ut
2.5.
T
he
magn
i
tude
sys
tem
i
s
al
s
o
odd
in
that
it
i
s
deri
v
ed
from
a
ran
k
ing
(fir
s
t
is
b
ri
ghte
s
t,
et
c
.)
s
o
the
br
i
ghte
s
t
s
tar
s
ha
v
e
a
low
magnitude
number
(
s
ome
e
v
en
being
negat
ive)
and
tho
s
e
wi
th
h
i
gh
magn
i
tude
are
v
er
y
dim.
A
u
s
eful
graphi
c
made
b
y
the
Uni
v
.
of
Virginia,
de
m
on
s
t
r
ate
s
the
magn
i
tude
sys
tem
b
elow.
A
u
s
efu
l w
a
y
to
c
hara
c
ter
iz
e
the
dar
kn
e
ss
of
y
our
night
sky
i
s
to
identif
y
the
fainte
s
t
s
tar
s
t
ha
t
y
ou
c
an
c
on
sis
tent
ly s
ee.
T
h
is is c
a
ll
e
d
the
“limiting
magnitude.”
Remember,
y
ou
need
to
b
e
out
si
de
fo
r
at
l
ea
s
t
10
m
i
nute
s
to
i
dentif
y
the
fainte
s
t
s
tar
s v
i
s
ible
in
gi
v
en
c
on
s
tellation
s
.
M
agn
i
tude
c
hart
s
for
i
nd
ivi
dua
l C
on
s
tellation
s
are
a
v
ailable
on
the Globe at Night website
.
C
hoo
s
e
a
c
on
s
te
ll
at
i
on
that
will
be
vis
ible
when
y
ou
plan
to
ob
s
er
v
e.
(If
y
ou
are
not
s
ure
w
hich
c
on
s
te
ll
at
i
o
ns will
be
up,
u
s
e
Stellarium
to
c
he
ck
.)
Sele
c
t
the
c
lo
s
e
s
t
Latitude
for
y
our
lo
c
at
ion (i
f
y
ou
a
r
e
i
n
Fl
or
i
da,
that
will
be
30-
N
).
Print
out
the
magnitude
c
hart
s
or
download
them
to
a
de
vic
e
wi
th
“n
i
ght
visi
on
mode”
(e.g.
enable red tint in iOS
).
If
y
ou
don’t
ha
v
e
a
cc
e
ss
to
a
p
rin
t
er
,
y
ou
c
an
s
tart
a
sk
et
c
h
of
the
br
i
ght
s
t
a
r
s s
hown
and
“fill
in”
y
our
sk
et
c
h
with
fainter
s
tar
s
w
hen y
ou
The common type of lighting pollution common in the chosen location is light glare. The light glare
is associated with vehicles vising the location at night.
a
r
e
obser
vi
ng.
If
y
ou
ha
v
e
troub
l
e
s
pott
i
ng
the
c
on
s
tellation
s
,
u
s
e
the helpful guides on Globe at Night
or
do
w
n
l
oad
a
free
augmented
rea
li
t
y s
tar
c
hart
app
for
y
our
phone
(e.g
S
kyv
iew
Lite).
If
the
M
oon
is visi
b
l
e,
k
no
wi
ng
w
h
ic
h
c
on
s
te
ll
at
i
on
s
are
near
the
Moon
ma
y
help
y
ou
orient
y
our
s
elf.
3.
R
e
c
o
r
d
y
our
ob
s
er
v
at
i
on
s
be
l
o
w
for
at
lea
s
t
three
night
s
,
and
submit them to Globe at Night
.
Als
o
t
ry
t
o
take
a
pho
t
o
of
the
c
on
s
tellation
s
with
y
our
phone
or
c
amera
and
in
c
lude
it
be
l
o
w
.
Observing
Log
f
rom
y
our
fi
r
st
n
i
ght
Date
21
st
June
Time
Longitude
32.767796
Latitude
-96.796739
Sky Conditions
Partly cloudy
Ho
w
d
ark
was
your
sky
that
night?
C
ons
t
ella
t
i
on
Limiting
Magnitude
1
6.5
2
7.5
3
15.8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Observing
Log o
f
y
our
sec
ond n
i
gh
t
Date
22
nd
June
Time
Longitude
32.767796
Latitude
-96.796739
Sky
Conditions
Partly cloudy
Ho
w
d
ark
was
your
sky
that
night?
C
ons
t
ella
t
i
on
Limiting
Magnitude
1
6.5
2
4.5
3
11.8
Observing
Log o
f
y
our
t
h
i
rd n
i
gh
t
Date
23
rd
June
Time
Longitude
32.767796
Latitude
-96.796739
Sky
Conditions
Partly cloudy
Ho
w
d
ark
was
your
sky
that
night?
C
ons
t
ella
t
i
on
Limiting
Magnitude
1
6.5
2
9.5
3
13.8
4.
Av
e
r
age
the
n
i
ne
v
a
l
ue
s y
ou
obta
i
ned
for
limiting
magnitude
in
three
dire
c
tion
s
on
the
th
ree
n
i
ght
s
.
T
h
is is y
our
mea
s
ured
v
a
l
ue
quantif
y
ing
y
our
lo
c
al
night
sky
brightne
ss
.
Citie
s have
limi
t
i
ng
m
agn
i
tude
s
of
3
or
4.
A
“d
a
r
k sky
”
c
on
s
idered
e
xc
ellent
for
s
targa
z
ing
will
ha
v
e
a
limi
t
i
ng
m
agn
i
tude
of
7
or
better.
The average is 9.16.
P
hase
II.
E
sti
m
ati
ng
t
h
e
numb
e
r o
f
v
isible
stars
in
the
sky
Fo
r
a
qu
ick
but
rea
lis
t
ic i
dea
of
ho
w
man
y s
tar
s
a
per
s
on
c
ould
s
ee
without
a
tele
sc
ope,
a
s
t
r
ono
m
e
r
s
u
s
e
a
s
tat
is
t
ic
a
l
method
c
alled
s
ampling,
in
whi
c
h
the
number
of
s
tar
s
in
s
om
e
k
no
w
n
f
r
a
c
t
i
on
of
the
sky
'
s
area
are
c
ounted;
then
that
number
i
s "sc
aled
up
"
to
gi
v
e
an
e
s
t
im
ate
of
the
number
that
w
ou
l
d
be
vi
s
ible
a
c
ro
ss
the
entire
sky
.
Almo
s
t
a
s
important
a
s this
tota
l
nu
m
ber
is i
t
s
un
c
erta
i
nt
y
,
w
h
ic
h
can
be
c
al
c
ulated
from
how
c
lo
s
el
y
the
re
s
ult
s
from
d
i
ffe
r
ent
s
amp
l
ed
l
o
c
at
i
on
s
agree
wi
th
ea
c
h
other.
I
m
ag
i
ne
l
oo
ki
ng
out
at
the
sky
through
a
hollow
tube.
The
ra
ys
of
light
entering
the
tube
c
o
me
f
r
o
m
a
m
u
ch l
arger
ci
r
c
u
l
ar
s
pot
on
the
sky
.
The
tube,
if
mo
v
ed
in
all
dire
c
tion
s
,
would
e
v
ent
ually
c
o
v
e
r
the
s
urfa
c
e
of
an
(
i
mag
i
nar
y
)
hemi
s
phere
c
entered
on
y
our
head;
tho
s
e
dire
c
tion
s
,
e
x
tended,
w
ou
l
d
form
the
"dome
of
the
night
sky
''
abo
v
e
y
ou
or
an
y c
lear
night.
5.
C
a
r
efu
lly
mea
s
ure
the
l
ength
of
the
tube,
L
,
and
it
s
inner
diameter,
D
.
Re
c
ord
the
s
e
bel
ow
.
6.
W
hat
is
the
pre
cisi
on
to
w
h
ic
h
y
ou
ha
v
e
mea
s
ured
L
and
D
?
Ma
k
e
s
ure
that
the
numbe
r o
f
si
gn
i
f
ic
ant
d
i
g
i
t
s y
ou
u
s
e
to
e
x
pre
ss y
our
mea
s
urement
s
ma
k
e
s s
en
s
e.
The length of tube L has been measured considering the eye of the observer.
The
a
r
ea
of
the
open
end
of
the
tube
is
ju
s
t
the
area
of
a
c
ir
c
le
of
diameter
D
,
whi
c
h
i
s
:
𝐴
?
?
?
=
π(
𝐷
/2)
2
=
π
𝐷
2
/4
The length of tube L is approximately 43 cm. the diameter of D is approximately 4 cm.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
=
=
=
=
2
If
y
ou
w
e
r
e
to
mo
v
e
the
tube
a
ll
aroun
d
abo
v
e
y
our
head,
the
far
end
would
tra
c
e
out
the
im
ag
i
na
ry
hem
is
phere
s
ho
w
n
i
n
the
f
i
gure
abo
v
e.
The
radiu
s
of
thi
s
hemi
s
phere
would
be
t
he
l
ength
L
of
t
he
tube.
T
he
s
urfa
c
e
area
of
the
imaginar
y
hemi
s
phere
i
s
half
the
s
urfa
c
e
area
o
f
a
c
o
m
p
l
ete
s
phere
of
rad
i
u
s
L
:
𝐴
?
??
?
?
ℎ??
???
ℎ?
?
?
=
2 π 𝐿
2
The
a
r
ea
at
the
end
of
the
tube,
e
x
tended
and
enlarged,
proje
c
t
s
out
onto
the
sky
,
a
s s
ho
wn
.
The
im
ag
i
nar
y
hem
is
phere,
e
x
tended
and
enlarged,
al
s
o
proje
c
t
s
out
a
s
the
hemi
s
phere
of
sky
s
een
o
v
e
r
an
ob
s
er
v
er.
S
o
w
e
c
an
s
a
y
that
a
proportion
or
ratio
e
x
i
s
t:
𝐴???
??
ℎ?????ℎ???
??
??𝑦
𝐴???
??
?????????
????
𝐴???
??
????????𝑦
ℎ?????ℎ???
𝐴???
??
???
??
????
?
?
(2π𝐿
2
)
8
𝐿
2
(π𝐷
)
2
/4
𝐷
2
7.
C
a
lc
u
l
a
t
e
the
rat
i
o
of
the
area
of
t
h
e
imaginar
y
hemi
s
phere
o
v
er
the
area
of
the
end
of
the
tube
and
re
c
ord
i
t
be
l
o
w
.
The Area of the hemisphere is 100.544
La
s
t
ly
,
w
e
ma
k
e
an
a
ss
umpt
i
on:
that
s
tar
s
are
s
pread
e
v
enl
y
a
c
ro
ss
the
night
sky
.
If
that
i
s
t
rue
,
then
the
m
ore
area
w
e
s
amp
l
e,
the
m
o
re
s
tar
s
we
s
hould
s
ee.
Mathemati
c
all
y
we
ha
v
e
the
ra
t
io
:
𝑇????
??????
??
?????
??
ℎ?????ℎ???
??
??𝑦
𝑁?????
??
?????
??
?????????
????
𝐴???
??
????????𝑦
ℎ?????ℎ???
8
𝐿
2
𝐴???
??
???
??
????
𝐷
2
8.
Usi
ng
t
h
e
rat
i
o
s w
e
’v
e
j
u
s
t
de
sc
r
i
bed,
write
a
formula
for
the
total
number
of
s
tar
s
in
th
e sky
that
depend
s
on
the
number
of
s
tar
s
within
the
proje
c
ted
s
pot
(on
a
v
erage)
and
the
ratio
8
𝐿
2
.
𝐷
= 8L
2
/D
2
= 80,000 stars
9.
N
o
w y
ou
are
read
y
to
ma
k
e
y
our
o
b
s
er
v
ation
s
and
appl
y
the
abo
v
e
formula
to
e
s
timat
e
t
he
nu
m
be
r
of
s
tar
s i
n
the
sky
.
R
emember
to
allow
y
our
e
y
e
s
at
lea
s
t
10
minute
s
to
adju
s
t
t
o
t
he
l
o
w li
gh
t
.
Loo
ki
ng
through
y
our
tube,
c
ount
how
ma
y s
tar
s y
ou
c
an
s
ee.
Repeat
thi
s
for
10
pa
r
t
s
of
the
sky
,
be
i
ng
s
ure
to
s
ample
in
all
dire
c
tion
s
.
Re
c
ord
both
the
dire
c
tion
of
the
sky
and
the
number
of
s
tar
s
that
y
ou
c
ounted
in
the
table
below.
Al
s
o,
note
the
time
and
d
a
t
e o
f
y
ou
r
ob
s
er
v
at
i
on
s
and
w
hether
or
not
the
moon
i
s v
i
s
ible.
Time
/
D
a
te
:
Is
t
he
M
oon
visi
b
le
?
:
___
y
e
s
/
no
___
√
_
Region
of Sky
1
2
3
4
5
6
7
8
9
10 Average
Direction
East
East
West
North
South South North
West
East
West
# of
Stars
10
13
8
10
11
12
14
10
13
9
11
T
i
p
s
fo
r y
our
s
tar
c
ount
i
ng:
2
2
●
Loo
k
a
li
tt
l
e
out
of
the
si
de
of
y
our
e
y
e
when
c
ounting
s
tar
s
.
Thi
s
te
c
hnique,
c
alled
a
v
e
r
ted
visi
on,
l
et
s
the
e
y
e
ha
v
e
a
little
more
s
en
s
iti
v
it
y
to
faint
s
tar
s
than
loo
k
ing
di
rec
t
ly
at
t
h
em
w
ou
l
d
(and
norma
lly
,
when
y
ou
ga
z
e
at
the
s
tar
s
,
y
our
v
i
s
ion
i
s
n't
re
s
tri
c
ted
by a
tube,
s
o
s
ome
s
tar
li
ght
w
ou
l
d
e
nter
the
s
ide
s
of
y
our
e
y
e
s
).
●
T
ry
to
c
o
v
er
a
l
ot
of
d
i
fferent
d
i
e
c
tion
s
and
altitude
s
,
from
loo
k
ing
s
traight
up
(
z
enit
h
d
ir
e
c
t
i
on)
to
l
oo
ki
ng
near
the
hori
z
on
and
toward
ele
v
ation
s
in-between
;
thi
s
will
gi
ve
y
ou
a
more
rea
lis
t
ic
e
s
t
i
mate
of
the
s
tar
number
s
.
Y
ou
no
w
ha
v
e
mea
s
ured
the
a
v
erage
number
of
s
tar
s y
ou
c
an
e
x
pe
c
t
to
s
ee
in
y
our
tube,
b
u
t
ho
w
a
cc
u
ra
te
is
th
is v
a
l
ue?
In
sci
en
c
e
quantif
y
ing
the
po
ss
ible
error
in
y
our
mea
s
urement
i
s jus
t
a
s im
po
r
tant
a
s
the
mea
s
urement
i
t
s
elf.
B
y c
han
c
e
y
ou
ma
y
get
e
x
a
c
tl
y
the
c
orre
c
t
an
s
we
r
,
bu
t
i
f
y
ou
r
e
x
per
i
ment
is
not
v
er
y
a
cc
urate,
y
ou
c
annot
e
x
pe
c
t
an
y
one
el
s
e
(in
c
luding
y
our
s
elf,
i
f
you
t
ri
ed
aga
i
n
)
to
f
i
nd
the
s
ame
re
s
u
l
t.
Co
n
c
lu
s
ion
s
are
drawn
from
e
v
iden
c
e
that
i
s
repeatable.
10.
C
a
lc
u
l
a
t
e
the
sc
atter,
or
un
c
erta
i
nt
y
,
in
y
our
a
v
erage
number;
the
be
s
t
c
hoi
c
e
i
s
the
s
tan
dard
de
vi
at
i
on,
σ
.
T
he
s
tandard
de
vi
at
i
on
of
the
s
ample
y
ou
ha
v
e
ta
k
en
c
an
be
c
omputed
us
ing
Exc
e
l (“
=
STDEV
.
S
()”
),
Goog
l
e
S
h
e
et
s
(“
=STDEV()”
),
or
an
online calculator
.
The
a
v
erag
e
nu
m
be
r
of
s
tar
s s
een
through
the
tube,
then,
c
an
be
e
x
pre
ss
ed
a
s
a
number
with
an
un
c
e
r
ta
i
nt
y
:
a
v
erage
±
σ
.
R
e
c
ord
thi
s
below.
The standard deviation = 2.309, the range is 11 ± 3 = (8 < x < 14)
11.
W
hen
the
a
v
erage
number
of
s
tars
i
s
multiplied
b
y
the
ratio
8
𝐿
2
y
ou
will
obtain
an
e
s
timat
e o
f
𝐷
the
tota
l
number
of
s
tar
s
that
that
s
hould
be
v
i
s
ible
to
the
na
k
ed
e
y
e
at
an
y
one
time.
T
he
un
c
e
r
ta
i
nt
y i
n
that
tota
l
nurnber
is j
u
s
t
σ
multiplied
b
y
the
s
ame
fa
c
tor,
8
𝐿
2
.
Re
c
ord
the
t
o
t
al
𝐷
nu
m
be
r
of
s
tar
s
and
un
c
erta
i
nt
y
fr
o
m
y
our
mea
s
urement
s
below.
= 80,000
12.
H
o
w
do
y
ou
e
x
pe
c
t
the
pre
s
en
c
e
o
f
the
Moon
to
c
hange
the
number
of
s
tar
s
that
are
v
i
sible
to
y
ou
r ey
e
at
n
i
ght?
S
tate
a
te
s
table
predi
c
tion
that
y
ou
c
an
te
s
t
u
s
ing
thi
s
pro
c
edure.
13.
N
o
w r
epeat
the
e
x
per
i
ment
on
at
l
ea
s
t
two
more
da
ys
when
the
c
ondition
s
ha
v
e
c
hang
ed so
that
the
Moon
is
no
w visi
b
l
e/not
vis
ible.
Re
c
ord
y
our
ob
s
er
v
ation
s
and
c
al
c
ulate
the
tot
al
nu
m
be
r
of
s
tar
s visi
b
l
e
i
n
the
sky
.
Time
/
D
a
te
:
The presence of the moon will cause light pollution, therefore reduce the number of start that
are observed.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Is
t
he
M
oon
visi
b
le
?
:
____
y
e
s
/
no
__
√
_
Region
of Sky
1
2
3
4
5
6
7
8
9
10 Average
Direction
East
East
West
North
South South North
West
East
West
# of
Stars
6
7
8
5
6
7
9
5
5
7
7
N
u
m
be
r
of
s
tar
s
±
un
c
erta
i
nt
y
= 4 or 10
Time
/
D
a
te
:
Is
t
he
M
oon
visi
b
le
?
:
____
y
e
s
/
no
____
Region
of Sky
1
2
3
4
5
6
7
8
9
10 Average
Direction
East East
West North South South North West East
West
# of
Stars
13
13
13
13
11
13
13
12
9
10
12
N
u
m
be
r
of
s
tar
s
±
un
c
erta
i
nt
y
= 9 or 15
14.
B
a
s
ed
on
the
data
y
ou
ha
v
e
c
o
ll
e
c
ted,
are
y
ou
able
to
c
onfirm
or
reje
c
t
y
our
predi
c
tion
f
or
ho
w
th
e
Moon
c
an
affe
c
t
the
number
of
v
i
s
ible
s
tar
s
?
Might
there
be
other
fa
c
tor
s
to
e
xplore
that
c
ou
l
d
c
ontr
i
bute
to
d
i
fferen
c
es
in
the
number
of
s
tar
s y
ou
c
ount?
E
x
plain
y
our
rea
soning
and
p
r
o
vi
de
s
pe
ci
f
ic
e
vi
den
c
e
fro
m y
our
ob
s
er
v
ation
s
to
s
upport
y
our
rea
s
oning.
The moon reflects a more light therefore distract the observation. The number of
starts recorded when the moon is present is slightly lower than the number of starts
when there is no moon.