Solutions for Single Variable Calculus: Early Transcendentals Plus MyLab Math with Pearson eText -- Access Card Package (2nd Edition) (Briggs/Cochran/Gillett Calculus 2e)
Problem 4E:
Explain what is meant by the period of a trigonometric function. What are the periods of the six...Problem 6E:
How are the sine and cosine functions related to the other four trigonometric functions?Problem 7E:
Where is the tangent function undefined?Problem 8E:
What is the domain of the secant function?Problem 9E:
Explain why the domain of the sine function must be restricted in order to define its inverse...Problem 13E:
The function tan x is undefined at x = /2. How does this fact appear in the graph of y = tan1 x?Problem 14E:
State the domain and range of sec1 x.Problem 16E:
Evaluating trigonometric functions Evaluate the following expressions using a unit circle. Use a...Problem 22E:
Evaluating trigonometric functions Evaluate the following expressions using a unit circle. Use a...Problem 28E:
Evaluating trigonometric functions Evaluate the following expressions or state that the quantity is...Problem 29E:
Trigonometric identities 29. Prove that sec=1cos.Problem 30E:
Trigonometric identities 30. Prove that tan=sincos.Problem 43E:
Solving trigonometric equations Solve the following equations. 43. cos 3x = sin 3x, 0 x 2Problem 47E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 48E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 49E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 50E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 51E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 52E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 53E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 54E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 55E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 56E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 57E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 58E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 59E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 60E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 61E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 62E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 67E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 69E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 72E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 73E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 75E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 76E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 77E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 78E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 79E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 81E:
Right-triangle pictures Express in terms of x using the inverse sine, inverse tangent, and inverse...Problem 82E:
Right-triangle pictures Express in terms of x using the inverse sine, inverse tangent, and inverse...Problem 83E:
Explain why or why not Determine whether the following statements are true and give an explanation...Problem 84E:
One function gives all six Given the following information about one trigonometric function,...Problem 85E:
One function gives all six Given the following information about one trigonometric function,...Problem 86E:
One function gives all six Given the following information about one trigonometric function,...Problem 87E:
One function gives all six Given the following information about one trigonometric function,...Problem 89E:
Amplitude and period Identify the amplitude and period of the following functions. 89. g() = 3 cos...Problem 91E:
Amplitude and period Identify the amplitude and period of the following functions. 91. q(x) = 3.6...Problem 92E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 93E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 94E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 95E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 97E:
Designer functions Design a sine function with the given properties. 97. It has a period of 24 hr...Problem 98E:
Field goal attempt Near the end of the 1950 Rose Bowl football game between the University of...Problem 99E:
A surprising result The Earth is approximately circular in cross section, with a circumference at...Problem 100E:
Daylight function for 40 N Verify that the function D(t)=2.8sin(2365(t81))+12 has the following...Problem 101E:
Block on a spring A light block hangs at rest from the end of a spring when it is pulled down 10 cm...Problem 103E:
Ladders Two ladders of length a lean against opposite walls of an alley with their feet touching...Problem 104E:
Pole in a corner A pole of length L is carried horizontally around a corner where a 3-ft-wide...Problem 105E:
Little-known fact The shortest day of the year occurs on the winter solstice (near December 21) and...Problem 106E:
Viewing angles An auditorium with a flat floor has a large flat-panel television on one wall. The...Problem 107E:
Area of a circular sector Prove that the area of a sector of a circle of radius r associated with a...Browse All Chapters of This Textbook
Chapter 1 - FunctionsChapter 1.1 - Review Of FunctionsChapter 1.2 - Representing FunctionsChapter 1.3 - Inverse, Exponential, And Logarithmic FunctionsChapter 1.4 - Trigonometric Functions And Their InversesChapter 2 - LimitsChapter 2.1 - The Idea Of LimitsChapter 2.2 - Definitions Of LimitsChapter 2.3 - Techniques For Computing LimitsChapter 2.4 - Infinite Limits
Chapter 2.5 - Limits At InfinityChapter 2.6 - ContinuityChapter 2.7 - Precise Definitions Of LimitsChapter 3 - DerivativesChapter 3.1 - Introducing The DerivativesChapter 3.2 - Working With DerivativesChapter 3.3 - Rules Of DifferentiationChapter 3.4 - The Product And Quotient RulesChapter 3.5 - Derivatives Of Trigonometric FunctionsChapter 3.6 - Derivatives As Rates Of ChangeChapter 3.7 - The Chain RuleChapter 3.8 - Implicit DifferentiationChapter 3.9 - Derivatives Of Logarithmic And Exponential FunctionsChapter 3.10 - Derivatives Of Inverse Trigonometric FunctionsChapter 3.11 - Related RatesChapter 4 - Applications Of The DerivativeChapter 4.1 - Maxima And MinimaChapter 4.2 - What Derivatives Tell UsChapter 4.3 - Graphing FunctionsChapter 4.4 - Optimization ProblemsChapter 4.5 - Linear Approximation And DifferentialsChapter 4.6 - Mean Value TheoremChapter 4.7 - L'hopital's RuleChapter 4.8 - Newton's MethodChapter 4.9 - AntiderivativesChapter 5 - IntegrationChapter 5.1 - Approximating Areas Under CurvesChapter 5.2 - Definite IntegralsChapter 5.3 - Fundamental Theorem Of CalculusChapter 5.4 - Working With IntegralsChapter 5.5 - Substitution RuleChapter 6 - Applications Of IntegrationChapter 6.1 - Velocity And Net ChangeChapter 6.2 - Regions Between CurvesChapter 6.3 - Volume By SlicingChapter 6.4 - Volume By ShellsChapter 6.5 - Length Of CurvesChapter 6.6 - Surface AreaChapter 6.7 - Physical ApplicationsChapter 6.8 - Logarithmic And Exponential Functions RevisitedChapter 6.9 - Exponential ModelsChapter 6.10 - Hyperbolic FunctionsChapter 7 - Integration TechniquesChapter 7.1 - Basic ApproachesChapter 7.2 - Integration By PartsChapter 7.3 - Trigonometric IntegralsChapter 7.4 - Trigonometric SubstitutionsChapter 7.5 - Partial FractionsChapter 7.6 - Other Integration StrategiesChapter 7.7 - Numerical IntegrationChapter 7.8 - Improper IntegralsChapter 7.9 - Introduction To Differential EquationsChapter 8 - Sequences And Infinite SeriesChapter 8.1 - An OverviewChapter 8.2 - SequencesChapter 8.3 - Infinite SeriesChapter 8.4 - The Divergence And Integral TestsChapter 8.5 - The Ratio, Root, And Comparison TestsChapter 8.6 - Alternating SeriesChapter 9 - Power SeriesChapter 9.1 - Approximating Functions With PolynomialsChapter 9.2 - Properties Of Power SeriesChapter 9.3 - Taylor SeriesChapter 9.4 - Working With Taylor SeriesChapter 10 - Parametric And Polar CurvesChapter 10.1 - Parametric EquationsChapter 10.2 - Polar CoordinatesChapter 10.3 - Calculus In Polar CoordinatesChapter 10.4 - Conic SectionsChapter A - Algebra Review
Book Details
This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative.
Sample Solutions for this Textbook
We offer sample solutions for Single Variable Calculus: Early Transcendentals Plus MyLab Math with Pearson eText -- Access Card Package (2nd Edition) (Briggs/Cochran/Gillett Calculus 2e) homework problems. See examples below:
More Editions of This Book
Corresponding editions of this textbook are also available below:
SINGLE VARBLE EARLY TRNS B.U. PKG
2nd Edition
ISBN: 9781269986274
Single Variable Calculus: Early Transcendentals & Student Solutions Manual, Single Variable for Calculus: Early Transcendentals & MyLab Math -- Valuepack Access Card Package
1st Edition
ISBN: 9780133941760
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
2nd Edition
ISBN: 9780321954237
Single Variable Calculus: Early Transcendentals
11th Edition
ISBN: 9780321664143
Calculus, Single Variable: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134766850
Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134996103
Single Variable Calculus Format: Unbound (saleable)
3rd Edition
ISBN: 9780134765761
Pearson eText Calculus: Early Transcendentals -- Instant Access (Pearson+)
3rd Edition
ISBN: 9780136880677
Calculus: Single Variable, Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
3rd Edition
ISBN: 9780134996714
MyLab Math with Pearson eText -- 24 Month Access -- for Calculus with Integrated Review
3rd Edition
ISBN: 9780135243435
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.