Solutions for Single Variable Calculus: Early Transcendentals & Student Solutions Manual, Single Variable for Calculus: Early Transcendentals & MyLab Math -- Valuepack Access Card Package
Problem 1E:
Explain the meaning of limxaf(x)=L.Problem 3E:
Explain the meaning of limxa+f(x)=L.Problem 4E:
Explain the meaning of limxaf(x)=L.Problem 5E:
If limxaf(x)=L and limxa+f(x)=M, where L and M are finite real numbers, then how are L and M related...Problem 7E:
Finding limits from a graph Use the graph of h in the figure to find the following values or state...Problem 8E:
Finding limits from a graph Use the graph of g in the figure to find the following values or state...Problem 9E:
Finding limits from a graph Use the graph of f in the figure to find the following values or state...Problem 10E:
Finding limits from a graph Use the graph of f in the figure to find the following values or state...Problem 11E:
Estimating a limit from tables Let f(x)=x24x2. a. Calculate f(x) for each value of x in the...Problem 12E:
Estimating a limit from tables Let f(x)=x31x1. a. Calculate f(x) for each value of x in the...Problem 13E:
Estimating a limit numerically Let g(t)=t9t3. a. Make two tables, one showing values of g for t =...Problem 14E:
Estimating a limit numerically Let f(x) = (1 + x)1/x. a. Make two tables, one showing values of f...Problem 19E:
One-sided and two-sided limits Let f(x)=x225x5. Use tables and graphs to make a conjecture about the...Problem 22E:
One-sided and two-sided limits Use the graph of g in the figure to find the following values or...Problem 23E:
Finding limits from a graph Use the graph of f in the figure to find the following values or state...Problem 25E:
Strange behavior near x = 0 a. Create a table of values of sin (1/x), for x=2,23,25,27,29, and 211....Problem 26E:
Strange behavior near x = 0 a. Create a table of values of tan (3/x) for x = 12/, 12/(3),12/(5), ,...Problem 27E:
Further Explorations 27. Explain why or why not Determine whether the following statements are true...Problem 28E:
Sketching graphs of functions Sketch the graph of a function with the given properties. You do not...Problem 29E:
Sketching graphs of functions Sketch the graph of a function with the given properties. You do not...Problem 30E:
Sketching graphs of functions Sketch the graph of a function with the given properties. You do not...Problem 31E:
Sketching graphs of functions Sketch the graph of a function with the given properties. You do not...Problem 32E:
Calculator limits Estimate the value of the following limits by creating a table of function values...Problem 34E:
Calculator limits Estimate the value of the following limits by creating a table of function values...Problem 36E:
A step function Let f(x)=xx, for x 0. a. Sketch a graph of f on the interval [ 2, 2]. b. Does...Problem 37E:
The floor function For any real number x, the floor function (or greatest integer function) x is the...Problem 38E:
The ceiling function For any real number x, the ceiling function x is the smallest integer greater...Problem 40E:
Limits by graphing Use the zoom and trace features of a graphing utility to approximate the...Problem 45E:
Limits of even functions A function f is even if f(x) = f(x), for all x in the domain of f. Suppose...Problem 46E:
Limits of odd functions A function g is odd if g(x) = g(x), for all x in the domain of g. Suppose g...Problem 47E:
Limits by graphs a. Use a graphing utility to estimate limx0tan2xsinx, limx0tan3xsinx, and...Browse All Chapters of This Textbook
Chapter 1 - FunctionsChapter 1.1 - Review Of FunctionsChapter 1.2 - Representing FunctionsChapter 1.3 - Inverse, Exponential, And Logarithmic FunctionsChapter 1.4 - Trigonometric Functions And Their InversesChapter 2 - LimitsChapter 2.1 - The Idea Of LimitsChapter 2.2 - Definitions Of LimitsChapter 2.3 - Techniques For Computing LimitsChapter 2.4 - Infinite Limits
Chapter 2.5 - Limits At InfinityChapter 2.6 - ContinuityChapter 2.7 - Precise Definitions Of LimitsChapter 3 - DerivativesChapter 3.1 - Introducing The DerivativesChapter 3.2 - Working With DerivativesChapter 3.3 - Rules Of DifferentiationChapter 3.4 - The Product And Quotient RulesChapter 3.5 - Derivatives Of Trigonometric FunctionsChapter 3.6 - Derivatives As Rates Of ChangeChapter 3.7 - The Chain RuleChapter 3.8 - Implicit DifferentiationChapter 3.9 - Derivatives Of Logarithmic And Exponential FunctionsChapter 3.10 - Derivatives Of Inverse Trigonometric FunctionsChapter 3.11 - Related RatesChapter 4 - Applications Of The DerivativeChapter 4.1 - Maxima And MinimaChapter 4.2 - What Derivatives Tell UsChapter 4.3 - Graphing FunctionsChapter 4.4 - Optimization ProblemsChapter 4.5 - Linear Approximation And DifferentialsChapter 4.6 - Mean Value TheoremChapter 4.7 - L'hopital's RuleChapter 4.8 - Newton's MethodChapter 4.9 - AntiderivativesChapter 5 - IntegrationChapter 5.1 - Approximating Areas Under CurvesChapter 5.2 - Definite IntegralsChapter 5.3 - Fundamental Theorem Of CalculusChapter 5.4 - Working With IntegralsChapter 5.5 - Substitution RuleChapter 6 - Applications Of IntegrationChapter 6.1 - Velocity And Net ChangeChapter 6.2 - Regions Between CurvesChapter 6.3 - Volume By SlicingChapter 6.4 - Volume By ShellsChapter 6.5 - Length Of CurvesChapter 6.6 - Surface AreaChapter 6.7 - Physical ApplicationsChapter 6.8 - Logarithmic And Exponential Functions RevisitedChapter 6.9 - Exponential ModelsChapter 6.10 - Hyperbolic FunctionsChapter 7 - Integration TechniquesChapter 7.1 - Basic ApproachesChapter 7.2 - Integration By PartsChapter 7.3 - Trigonometric IntegralsChapter 7.4 - Trigonometric SubstitutionsChapter 7.5 - Partial FractionsChapter 7.6 - Other Integration StrategiesChapter 7.7 - Numerical IntegrationChapter 7.8 - Improper IntegralsChapter 7.9 - Introduction To Differential EquationsChapter 8 - Sequences And Infinite SeriesChapter 8.1 - An OverviewChapter 8.2 - SequencesChapter 8.3 - Infinite SeriesChapter 8.4 - The Divergence And Integral TestsChapter 8.5 - The Ratio, Root, And Comparison TestsChapter 8.6 - Alternating SeriesChapter 9 - Power SeriesChapter 9.1 - Approximating Functions With PolynomialsChapter 9.2 - Properties Of Power SeriesChapter 9.3 - Taylor SeriesChapter 9.4 - Working With Taylor SeriesChapter 10 - Parametric And Polar CurvesChapter 10.1 - Parametric EquationsChapter 10.2 - Polar CoordinatesChapter 10.3 - Calculus In Polar CoordinatesChapter 10.4 - Conic SectionsChapter A - Algebra Review
Sample Solutions for this Textbook
We offer sample solutions for Single Variable Calculus: Early Transcendentals & Student Solutions Manual, Single Variable for Calculus: Early Transcendentals & MyLab Math -- Valuepack Access Card Package homework problems. See examples below:
More Editions of This Book
Corresponding editions of this textbook are also available below:
SINGLE VARBLE EARLY TRNS B.U. PKG
2nd Edition
ISBN: 9781269986274
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
2nd Edition
ISBN: 9780321954237
Single Variable Calculus: Early Transcendentals Plus MyLab Math with Pearson eText -- Access Card Package (2nd Edition) (Briggs/Cochran/Gillett Calculus 2e)
2nd Edition
ISBN: 9780321965172
Single Variable Calculus: Early Transcendentals
11th Edition
ISBN: 9780321664143
Calculus, Single Variable: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134766850
Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134996103
Single Variable Calculus Format: Unbound (saleable)
3rd Edition
ISBN: 9780134765761
Pearson eText Calculus: Early Transcendentals -- Instant Access (Pearson+)
3rd Edition
ISBN: 9780136880677
Calculus: Single Variable, Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
3rd Edition
ISBN: 9780134996714
MyLab Math with Pearson eText -- 24 Month Access -- for Calculus with Integrated Review
3rd Edition
ISBN: 9780135243435
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.