Solutions for Single Variable Calculus: Early Transcendentals & Student Solutions Manual, Single Variable for Calculus: Early Transcendentals & MyLab Math -- Valuepack Access Card Package
Problem 1RE:
Explain why or why not Determine whether the following statements are true and give an explanation...Problem 2RE:
Domain and range Find the domain and range of the following functions. a. f(x)=x5+x b. g(y)=1y2 c....Problem 3RE:
Equations of lines In each part below, find an equation of the line with the given properties. Graph...Problem 5RE:
Graphing absolute value Consider the function f(x) = 2(x |x|). Express the function in two pieces...Problem 6RE:
Function from words Suppose you plan to take a 500-mile trip in a car that gets 35 mi/gal. Find the...Problem 7RE:
Graphing equations Graph the following equations. Use a graphing utility to check your work. a. 2x ...Problem 8RE:
Root functions Graph the functions f(x) = x1/3 and g(x) = x1/4. Find all points where the two graphs...Problem 11RE:
Boiling-point function Water boils at 212 F at sea level and at 200 F at an elevation of 6000 ft....Problem 12RE:
Publishing costs A small publisher plans to spend 1000 for advertising a paperback book and...Problem 14RE:
Shifting and scaling The graph of f is shown in the figure. Graph the following functions. a. f(x +...Problem 15RE:
Composite functions Let f(x) = x3, g(x) = sin x, and h(x)=x. a. Evaluate h(g(/2)). b. Find h(f(x))....Problem 16RE:
Composite functions Find functions f and g such that h = f g. a. h(x) = sin (x2 +1) b. h(x) = (x2 ...Problem 17RE:
Simplifying difference quotients Evaluate and simplify the difference quotients f(x+h)f(x)h and...Problem 18RE:
Simplifying difference quotients Evaluate and simplify the difference quotients f(x+h)f(x)h and...Problem 19RE:
Simplifying difference quotients Evaluate and simplify the difference quotients f(x+h)f(x)h and...Problem 20RE:
Simplifying difference quotients Evaluate and simplify the difference quotients f(x+h)f(x)h and...Problem 21RE:
Symmetry Identify the symmetry (if any) in the graphs of the following equations. a. y = cos 3x b. y...Problem 26RE:
Existence of inverses Determine the largest intervals on which the following functions have an...Problem 27RE:
Finding inverses Find the inverse on the specified interval and express it in the form y = f1 (x)....Problem 30RE:
Graphing sine and cosine functions Use shifts and scalings to graph the following functions, and...Problem 31RE:
Designing functions Find a trigonometric function f that satisfies each set of properties. Answers...Problem 33RE:
Matching Match each function af with the corresponding graphs AF. a. f(x) = sin x b. f(x) = cos 2x...Problem 36RE:
Inverse sines and cosines Evaluate or simplify the following expressions without using a calculator....Problem 37RE:
Inverse sines and cosines Evaluate or simplify the following expressions without using a calculator....Problem 38RE:
Inverse sines and cosines Evaluate or simplify the following expressions without using a calculator....Problem 39RE:
Inverse sines and cosines Evaluate or simplify the following expressions without using a calculator....Problem 40RE:
Inverse sines and cosines Evaluate or simplify the following expressions without using a calculator....Problem 46RE:
Right-triangle relationships Draw a right triangle to simplify the given expression. Assume x 0 and...Problem 48RE:
Right-triangle relationships Draw a right triangle to simplify the given expression. Assume x 0 and...Browse All Chapters of This Textbook
Chapter 1 - FunctionsChapter 1.1 - Review Of FunctionsChapter 1.2 - Representing FunctionsChapter 1.3 - Inverse, Exponential, And Logarithmic FunctionsChapter 1.4 - Trigonometric Functions And Their InversesChapter 2 - LimitsChapter 2.1 - The Idea Of LimitsChapter 2.2 - Definitions Of LimitsChapter 2.3 - Techniques For Computing LimitsChapter 2.4 - Infinite Limits
Chapter 2.5 - Limits At InfinityChapter 2.6 - ContinuityChapter 2.7 - Precise Definitions Of LimitsChapter 3 - DerivativesChapter 3.1 - Introducing The DerivativesChapter 3.2 - Working With DerivativesChapter 3.3 - Rules Of DifferentiationChapter 3.4 - The Product And Quotient RulesChapter 3.5 - Derivatives Of Trigonometric FunctionsChapter 3.6 - Derivatives As Rates Of ChangeChapter 3.7 - The Chain RuleChapter 3.8 - Implicit DifferentiationChapter 3.9 - Derivatives Of Logarithmic And Exponential FunctionsChapter 3.10 - Derivatives Of Inverse Trigonometric FunctionsChapter 3.11 - Related RatesChapter 4 - Applications Of The DerivativeChapter 4.1 - Maxima And MinimaChapter 4.2 - What Derivatives Tell UsChapter 4.3 - Graphing FunctionsChapter 4.4 - Optimization ProblemsChapter 4.5 - Linear Approximation And DifferentialsChapter 4.6 - Mean Value TheoremChapter 4.7 - L'hopital's RuleChapter 4.8 - Newton's MethodChapter 4.9 - AntiderivativesChapter 5 - IntegrationChapter 5.1 - Approximating Areas Under CurvesChapter 5.2 - Definite IntegralsChapter 5.3 - Fundamental Theorem Of CalculusChapter 5.4 - Working With IntegralsChapter 5.5 - Substitution RuleChapter 6 - Applications Of IntegrationChapter 6.1 - Velocity And Net ChangeChapter 6.2 - Regions Between CurvesChapter 6.3 - Volume By SlicingChapter 6.4 - Volume By ShellsChapter 6.5 - Length Of CurvesChapter 6.6 - Surface AreaChapter 6.7 - Physical ApplicationsChapter 6.8 - Logarithmic And Exponential Functions RevisitedChapter 6.9 - Exponential ModelsChapter 6.10 - Hyperbolic FunctionsChapter 7 - Integration TechniquesChapter 7.1 - Basic ApproachesChapter 7.2 - Integration By PartsChapter 7.3 - Trigonometric IntegralsChapter 7.4 - Trigonometric SubstitutionsChapter 7.5 - Partial FractionsChapter 7.6 - Other Integration StrategiesChapter 7.7 - Numerical IntegrationChapter 7.8 - Improper IntegralsChapter 7.9 - Introduction To Differential EquationsChapter 8 - Sequences And Infinite SeriesChapter 8.1 - An OverviewChapter 8.2 - SequencesChapter 8.3 - Infinite SeriesChapter 8.4 - The Divergence And Integral TestsChapter 8.5 - The Ratio, Root, And Comparison TestsChapter 8.6 - Alternating SeriesChapter 9 - Power SeriesChapter 9.1 - Approximating Functions With PolynomialsChapter 9.2 - Properties Of Power SeriesChapter 9.3 - Taylor SeriesChapter 9.4 - Working With Taylor SeriesChapter 10 - Parametric And Polar CurvesChapter 10.1 - Parametric EquationsChapter 10.2 - Polar CoordinatesChapter 10.3 - Calculus In Polar CoordinatesChapter 10.4 - Conic SectionsChapter A - Algebra Review
Sample Solutions for this Textbook
We offer sample solutions for Single Variable Calculus: Early Transcendentals & Student Solutions Manual, Single Variable for Calculus: Early Transcendentals & MyLab Math -- Valuepack Access Card Package homework problems. See examples below:
More Editions of This Book
Corresponding editions of this textbook are also available below:
SINGLE VARBLE EARLY TRNS B.U. PKG
2nd Edition
ISBN: 9781269986274
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
2nd Edition
ISBN: 9780321954237
Single Variable Calculus: Early Transcendentals Plus MyLab Math with Pearson eText -- Access Card Package (2nd Edition) (Briggs/Cochran/Gillett Calculus 2e)
2nd Edition
ISBN: 9780321965172
Single Variable Calculus: Early Transcendentals
11th Edition
ISBN: 9780321664143
Calculus, Single Variable: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134766850
Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134996103
Single Variable Calculus Format: Unbound (saleable)
3rd Edition
ISBN: 9780134765761
Pearson eText Calculus: Early Transcendentals -- Instant Access (Pearson+)
3rd Edition
ISBN: 9780136880677
Calculus: Single Variable, Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
3rd Edition
ISBN: 9780134996714
MyLab Math with Pearson eText -- 24 Month Access -- for Calculus with Integrated Review
3rd Edition
ISBN: 9780135243435
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.