Solutions for MAT 171 ACCESS CODE
Problem 3SP:
Evaluate each expression. a.log5125b.log381c.log4164Problem 4SP:
Evaluate. a.log10,000,000b.log0.1c.lne5d.lneProblem 7SP:
Graph the functions. a.y=log4xb.y=log1/2xProblem 8SP:
Graph the function. Identify the vertical asymptote and write the domain in interval notation....Problem 10SP:
a. Determine the magnitude of an earthquake that is 105.2 times I0. b. Determine the magnitude of an...Problem 1PE:
Given positive real numbers x and b such that b1,y=logbx is the function base b and is equivalent...Problem 3PE:
The logarithmic function base 10 is called the logarithmic function, and the logarithmic function...Problem 4PE:
Given y=logx, the base is understood to be . Given y=lnx, the base is understood to be .Problem 5PE:
logb1= because b=1.Problem 6PE:
logbb= because b=b.Problem 8PE:
The graph of y=logbx passes through the point (1, 0) and the line is a (horizontal/vertical)...Problem 11PE:
For Exercises 9-16, write the equation in exponential form. (See Example 1) log110,000=4Problem 12PE:
For Exercises 9-16, write the equation in exponential form. (See Example 1) log11,000,000=6Problem 26PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) log216Problem 30PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4)...Problem 32PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) log319Problem 34PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4)...Problem 36PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) lne10Problem 38PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) ln1e8Problem 40PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) log1/416Problem 42PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4)...Problem 43PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4)...Problem 44PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4)...Problem 46PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) log3/294Problem 47PE:
For Exercises 25-50, simplify the expression without using a calculator. (See Examples 3-4) log335Problem 51PE:
For Exercises 51-52, estimate the value of each logarithm between two consecutive integers. Then use...Problem 52PE:
For Exercises 51-52, estimate the value of each logarithm between two consecutive integers. Then use...Problem 54PE:
For Exercises 53-54, approximate fx=lnx for the given values of x. Round to 4 decimal places. (See...Problem 55PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) log4411Problem 56PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) log667Problem 57PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) logccProblem 58PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) logddProblem 60PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) 4log4acProblem 61PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) lnea+bProblem 62PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) lnex2+1Problem 63PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) log51Problem 64PE:
For Exercises 55-64, simplify the expression without using a calculator. (See Example 6) log1Problem 81PE:
For Exercises 79-92, write the domain in interval notation. (See Example 9) hx=log26x+7Problem 82PE:
For Exercises 79-92, write the domain in interval notation. (See Example 9) kx=log35x+6Problem 87PE:
For Exercises 79-92, write the domain in interval notation. (See Example 9) mx=3+ln111xProblem 88PE:
For Exercises 79-92, write the domain in interval notation. (See Example 9) nx=4log1x+5Problem 90PE:
For Exercises 79-92, write the domain in interval notation. (See Example 9) qx=logx2+10x+9Problem 94PE:
The intensities of earthquakes are measured with seismographs all over the world at different...Problem 95PE:
Sounds are produced when vibrating objects create pressure waves in some medium such as air. When...Problem 96PE:
Sounds are produced when vibrating objects create pressure waves in some medium such as air. When...Problem 97PE:
Scientists use the pH scale to represent the level of acidity or alkalinity of a liquid. This is...Problem 98PE:
Scientists use the pH scale to represent the level of acidity or alkalinity of a liquid. This is...Problem 100PE:
For Exercises 99-102, a. Write the equation in exponential form. b. Solve the equation from part...Problem 101PE:
For Exercises 99-102, a. Write the equation in exponential form. b. Solve the equation from part...Problem 102PE:
For Exercises 99-102, a. Write the equation in exponential form. b. Solve the equation from part...Problem 103PE:
For Exercises 103-106, evaluate the expressions. log3log464Problem 105PE:
For Exercises 103-106, evaluate the expressions. log16log813Problem 106PE:
For Exercises 103-106, evaluate the expressions. log4log164Problem 107PE:
a. Evaluate log22+log24 b. Evaluate log224 c. How do the values of the expressions in parts (a) and...Problem 108PE:
a. Evaluate log33+log327 b. Evaluate log3327 c. How do the values of the expressions in parts (a)...Problem 109PE:
a. Evaluate log464log44 b. Evaluate log4644 c. How do the values of the expressions in parts (a) and...Problem 110PE:
a. Evaluate log100,000log100 b. Evaluate log100,000100 c. How do the values of the expressions in...Problem 111PE:
a. Evaluate log225 b. Evaluate 5log22 c. How do the values of the expressions in parts (a) and (b)...Problem 112PE:
a. Evaluate log776 b. Evaluate 6log77 c. How do the values of the expressions in parts (a) and (b)...Problem 113PE:
a. The time t (in years) required for an investment to double with interest compounded continuously...Problem 114PE:
a. The number n of monthly payments of P dollars each required to pay off a loan of A dollars in its...Problem 115PE:
For Exercises 115-116, use a calculator to approximate the given logarithms to 4 decimal places. a....Problem 116PE:
For Exercises 115-116, use a calculator to approximate the given logarithms to 4 decimal places. a....Problem 2PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 3PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 4PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 5PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 6PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 7PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 8PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 9PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 10PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 11PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Problem 12PRE:
For Exercises 1-14, a. Write the domain. b. Write the range. c. Find the x-intercepts. d. Find the...Browse All Chapters of This Textbook
Chapter R - Review Of PrerequisitesChapter R.1 - Sets And The Real Number LineChapter R.2 - Exponents And RadicalsChapter R.3 - Polynomials And FactoringChapter R.4 - Rational Expressions And More Operations On RadicalsChapter R.5 - Equations With Real SolutionsChapter R.6 - Complex Numbers And More Quadratic EquationsChapter R.7 - Applications Of EquationsChapter R.8 - Linear, Compound, And Absolute Value InequalitiesChapter 1 - Functions And Relations
Chapter 1.1 - The Rectangular Coordinate System And Graphing UtilitiesChapter 1.2 - CirclesChapter 1.3 - Functions And RelationsChapter 1.4 - Linear Equations In Two Variables And Linear FunctionsChapter 1.5 - Applications Of Linear Equations And ModelingChapter 1.6 - Transformations Of GraphsChapter 1.7 - Analyzing Graphs Of Functions And Piecewise-defined FunctionsChapter 1.8 - Algebra Of Functions And Function CompositionChapter 2 - Polynomial And Rational FunctionsChapter 2.1 - Quadratic Functions And ApplicationsChapter 2.2 - Introduction To Polynomial FunctionsChapter 2.3 - Division Of Polynomials And The Remainder And Factor TheoremsChapter 2.4 - Zeros Of PolynomialsChapter 2.5 - Rational FunctionsChapter 2.6 - Polynomial And Rational InequalitiesChapter 2.7 - VariationChapter 3 - Exponential And Logarithmic FunctionsChapter 3.1 - Inverse FunctionsChapter 3.2 - Exponential FunctionsChapter 3.3 - Logarithmic FunctionsChapter 3.4 - Properties Of LogarithmsChapter 3.5 - Exponential And Logarithmic Equations And ApplicationsChapter 3.6 - Modeling With Exponential And Logarithmic FunctionsChapter 4 - Trigonometric FunctionsChapter 4.1 - Angles And Their MeasureChapter 4.2 - Trigonometric Functions Defined On The Unit CircleChapter 4.3 - Right Triangle TrigonometryChapter 4.4 - Trigonometric Functions Of Any AngleChapter 4.5 - Graphs Of Sine And Cosine FunctionsChapter 4.6 - Graphs Of Other Trigonometric FunctionsChapter 4.7 - Inverse Trigonometric FunctionsChapter 5 - Analytic TrigonometryChapter 5.1 - Fundamental Trigonometric IdentitiesChapter 5.2 - Sum And Difference FormulasChapter 5.3 - Double-angle, Power-reducing, And Half-angle FormulasChapter 5.4 - Product-to-sum And Sum-to-product FormulasChapter 5.5 - Trigonometric EquationsChapter 6 - Applications Of Trigonometric FunctionsChapter 6.1 - Applications Of Right TrianglesChapter 6.2 - The Law Of SinesChapter 6.3 - The Law Of CosinesChapter 6.4 - Harmonic MotionChapter 7 - Trigonometry Applied To Polar Coordinate Systems And VectorsChapter 7.1 - Polar CoordinatesChapter 7.2 - Graphs Of Polar EquationsChapter 7.3 - Complex Numbers In Polar FormChapter 7.4 - VectorsChapter 7.5 - Dot ProductChapter 8 - Systems Of Equations And InequalitiesChapter 8.1 - Systems Of Linear Equations In Two Variables And ApplicationsChapter 8.2 - Systems Of Linear Equations In Three Variables And ApplicationsChapter 8.3 - Partial Fraction DecompositionChapter 8.4 - Systems Of Nonlinear Equations In Two VariablesChapter 8.5 - Inequalities And Systems Of Inequalities In Two VariablesChapter 8.6 - Linear ProgrammingChapter 9 - Matrices And Determinants And ApplicationsChapter 9.1 - Solving Systems Of Linear Equations Using MatricesChapter 9.2 - Inconsistent Systems And Dependent EquationsChapter 9.3 - Operations On MatricesChapter 9.4 - Inverse Matrices And Matrix EquationsChapter 9.5 - Determinants And Cramer’s RuleChapter 10 - Analytic GeometryChapter 10.1 - The EllipseChapter 10.2 - The HyperbolaChapter 10.3 - The ParabolaChapter 10.4 - Rotation Of AxesChapter 10.5 - Polar Equations Of ConicsChapter 10.6 - Plane Curves And Parametric EquationsChapter 11 - Sequences, Series, Induction, And ProbabilityChapter 11.1 - Sequences And SeriesChapter 11.2 - Arithmetic Sequences And SeriesChapter 11.3 - Geometric Sequences And SeriesChapter 11.4 - Mathematical InductionChapter 11.5 - The Binomial TheoremChapter 11.6 - Principles Of CountingChapter 11.7 - Introduction To Probability
Sample Solutions for this Textbook
We offer sample solutions for MAT 171 ACCESS CODE homework problems. See examples below:
More Editions of This Book
Corresponding editions of this textbook are also available below:
PRECALCULAS-ALEKS 360 ACCESS CODE
17th Edition
ISBN: 9781264003594
Precalculus
17th Edition
ISBN: 9780077538286
PRECALCULUS
1st Edition
ISBN: 9781260930207
PRECALCULUS >I<
19th Edition
ISBN: 9781260862768
ALEKS 360 AC PRECALC
1st Edition
ISBN: 9781264665037
PRECALCULUS (LL) W/ALEK ACCESS PKG
17th Edition
ISBN: 9781259822148
GEN CMB LL PRECALC ALEKS 360
1st Edition
ISBN: 9781264657506
PRECALCULUS-LL W/ALEKS360>BI<
19th Edition
ISBN: 9781264050017
Precalculs
1st Edition
ISBN: 9781259254185
ALEKS 360 ACCESS CARD PRECALCULUS 18 WK
1st Edition
ISBN: 9781265748456
Precalculus
17th Edition
ISBN: 9780078035609
ALEKS 360 WEB (1 YEAR)
20th Edition
ISBN: 9781265804183
PRECALCULUS-ALEKS 360 (11 WEEKS)
17th Edition
ISBN: 9781259723308
PRECALCULUS
17th Edition
ISBN: 9781259822100
PRECALCULUS:LL W/ALEKS
17th Edition
ISBN: 9781260499780
PRECALCULAS ALEKS 360 18 WEEK
1st Edition
ISBN: 9781266865527
PRECALCULUS: W/ALEKS360 ACCESS
1st Edition
ISBN: 9781259822094
ALEKS 360 PRECALCULUS CODE (6 WEEKS)
17th Edition
ISBN: 9781260962192
PRECALCULUS (LOOSELEAF) >CUSTOM<
17th Edition
ISBN: 9781264291830
PRECALCULUS ALEKS360>BI<
1st Edition
ISBN: 9781264024766
EBK PRECALCULUS
1st Edition
ISBN: 8220102806511
ALEKS 360 ACCESS F/PRECALCULUS...
17th Edition
ISBN: 9781260878240
PRECALCULUS (LOOSELEAF)-W/ALEKS ACCESS
17th Edition
ISBN: 9781260142433
PRECALCULUS:LL
17th Edition
ISBN: 9781260505412
PRECALCULUS BOUND TEXTBOOK
1st Edition
ISBN: 9781307005608
PreCalculus-Aleks 360 Access
17th Edition
ISBN: 9781259723322
PRECALCULUS (LL) W/ALEKS 360
1st Edition
ISBN: 9781264029853
ALEKS 360 for Precalculus
1st Edition
ISBN: 9781259723315
PRECALCULUS-ALEKS ACCESS (52 WEEKS)
17th Edition
ISBN: 9780077538217
Precalculus
17th Edition
ISBN: 9780077538309
PRECALCULUS:CHBA
17th Edition
ISBN: 9781260505429
PRECALCULUS: ALEKS
1st Edition
ISBN: 9781260505436
ALEKS 360 ACCESS CARD FOR PRECALCULUS
2nd Edition
ISBN: 9781264655106
PRECALCULUS (LOOSELEAF)
2nd Edition
ISBN: 9781264248421
PRECALCULUS W/ ALEKS 360 CODE PKG
2nd Edition
ISBN: 9781264065172
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.