Solutions for Elementary Algebra
Problem 1.27TI:
Simplify: (a)53 (b)17 .Problem 1.28TI:
Simplify: (a) 72 (b) 05 .Problem 1.29TI:
Simplify: (a)1252 (b)(125)2Problem 1.30TI:
Simplify: (a)8+39 (b)(8+3)9Problem 1.31TI:
Simplify: 305+10(32) .Problem 1.32TI:
Simplify: 7010+4(62) .Problem 1.33TI:
Simplify: 9+53[4(9+3)].Problem 1.34TI:
Simplify: 722[4(5+1)].Problem 1.35TI:
Evaluate 8x3 , when (a) x=2 and (b) x=1 .Problem 1.36TI:
Evaluate 4y4 , when (a) y=3 and (b) y=5 .Problem 1.37TI:
Evaluate x=3 , when (a) x2 (b) 4x .Problem 1.38TI:
Evaluate x=6 , when (a) x3 (b) 2xProblem 1.39TI:
Evaluate 3x2+4x+1 when x=3 .Problem 1.40TI:
Evaluate 6x24x7 when x=2 .Problem 1.41TI:
Identify the coefficient of each term: (a) 17x (b) 41b2 (c) z.Problem 1.42TI:
Identify the coefficient of each term: (a) 9p (b) 13a3 (c) y3 .Problem 1.43TI:
Identify the like terms: 9, 2x3 , y2,8x3 , 15 9y , 11y2Problem 1.44TI:
Identify the like terms: 4x3,8x2,19,3x2,24,6x3 .Problem 1.45TI:
Identify the terms in the expression 4x2+5x+17 .Problem 1.46TI:
Identify the terms in the expression 5x+2y .Problem 1.47TI:
Simplify: 3x2+7x+9+7x2+9x+8 .Problem 1.48TI:
Simplify: 4y2+5y+2+8y2+4y+5 .Problem 1.49TI:
Translate the English phrase into an algebraic expression: (a) the difference of 14x2 and 13(b) the...Problem 1.50TI:
Translate the English phrase into an algebraic expression: (a) the sum of 17y2 and 19 (b) the...Problem 1.51TI:
Translate the English phrase into an algebraic expression: (a) Eleven more than x (b) Fourteen less...Problem 1.52TI:
Translate the English phrase into an algebraic expression: (a) 13 more than z (b) 18 less than 8x.Problem 1.53TI:
Translate the English phrase into an algebraic expression: (a) four times the sum of p and q (b) the...Problem 1.54TI:
Translate the English phrase into an algebraic expression: (a) the difference of two times x and 8,...Problem 1.55TI:
The length of a rectangle is 7 less than the width. Let w represent the width of the rectangle....Problem 1.56TI:
The width of a rectangle is 6 less than the length. Let I represent the length of the rectangle....Problem 1.57TI:
Geoffrey has dimes and quarters in his pocket. The number of dimes is eight less than four times the...Problem 1.58TI:
Lauren has dimes and nickels in her purse. The number of dimes is three more than seven times the...Problem 97E:
In the following exercises, determine if each is an expression or an equation. 97. 96=54Problem 98E:
In the following exercises, determine if each is an expression or an equation. 98. 79=63Problem 99E:
In the following exercises, determine if each is an expression or an equation. 99. 54+3Problem 100E:
In the following exercises, determine if each is an expression or an equation. 100. x+7Problem 101E:
In the following exercises, determine if each is an expression or an equation. 101. x+9Problem 102E:
In the following exercises, determine if each is an expression or an equation. 102. y5=25Problem 108E:
In the following exercises, simplify using the order of operations. 108. (a) 2+63 (b) (2+6)3Problem 134E:
In the following exercises, evaluate the following expressions. 134. 6x+3y9 , when x=6,y=9Problem 135E:
In the following exercises, evaluate the following expressions. 135. (xy)2 when x=10,y=7Problem 136E:
In the following exercises, evaluate the following expressions. 136. (x+y)2 when x=6,y=9Problem 137E:
In the following exercises, evaluate the following expressions. 137. a2+b2 when a=3,b=8Problem 138E:
In the following exercises, evaluate the following expressions. 138. r2s2 when r=12 , s=5Problem 139E:
In the following exercises, evaluate the following expressions. 139. 2l+2w when l=15,w=12Problem 140E:
In the following exercises, evaluate the following expressions. 140. 2l+2w when l=18,w=14Problem 153E:
In the following exercises, simplify the following expressions by combining like terms. 153. 10x+3xProblem 154E:
In the following exercises, simplify the following expressions by combining like 154. 15x+4xProblem 155E:
In the following exercises, simplify the following expressions by combining like terms. 155. 4c+2c+cProblem 156E:
In the following exercises,, simplify the following expressions by combining like terms. 156....Problem 157E:
In the following exercises, simplify the following expressions by combining like terms. 157....Problem 158E:
In the following exercises, simplify the following expressions by combining like terms. 158....Problem 159E:
In the following exercises, simplify the following expressions by combining like terms. 159....Problem 160E:
In the following exercises,, simplify the following expressions by combining like terms. 160....Problem 161E:
In the following exercises, simplify the following expressions by combining like terms. 161....Problem 162E:
In the following exercises, simplify the following expressions by combining like terms. 162....Problem 163E:
In the following exercises, translate the phrases into algebraic expressions. 163. the difference of...Problem 164E:
In the following exercises, translate the phrases into algebraic expressions. 164. the difference of...Problem 165E:
In the following exercises, translate the phrases into algebraic expressions. 165. the product of 9...Problem 166E:
In the following exercises, translate the phrases into algebraic expressions. 166. the product of 8...Problem 167E:
In the following exercises, translate the phrases into algebraic expressions. 167. the quotient of...Problem 168E:
In the following exercises, translate the phrases into algebraic expressions. 168. the quotient of...Problem 169E:
In the following exercises, translate the phrases into algebraic expressions. 169. the sum of 8x and...Problem 170E:
In the following exercises, translate the phrases into algebraic expressions. 170. the sum of 13x...Problem 171E:
In the following exercises, translate the phrases into algebraic expressions. 171. the quotient of y...Problem 172E:
In the following exercises, translate the phrases into algebraic expressions. 172. the quotient of y...Problem 173E:
In the following exercises, translate the phrases into algebraic expressions. 173. eight times the...Problem 174E:
In the following exercises, translate the phrases into algebraic expressions. 174. seven times the...Problem 175E:
In the following exercises, translate the phrases into algebraic expressions. 175. Eric has rock and...Problem 176E:
In the following exercises, translate the phrases into algebraic expressions. 176. The number of...Problem 177E:
In the following exercises, translate the phrases into algebraic expressions. 177. Greg has nickels...Problem 178E:
In the following exercises, translate the phrases into algebraic expressions. 178. Jeannette has $5...Problem 179E:
Car insurance Justin’s car insurance has a $750 deductible per incident. This means that he pays...Browse All Chapters of This Textbook
Chapter 1 - FoundationsChapter 1.1 - Introduction To Whole NumbersChapter 1.2 - Use The Language Of AlgebraChapter 1.3 - Add And Subtract IntegersChapter 1.4 - Multiply And Divide IntegersChapter 1.5 - Visualize FractionsChapter 1.6 - Add And Subtract FractionsChapter 1.7 - DecimalsChapter 1.8 - The Real NumbersChapter 1.9 - Properties Of Real Numbers
Chapter 1.10 - Systems Of MeasurementChapter 2 - Solving Linear Equations And InequalitiesChapter 2.1 - Solve Equations Using The Subtraction And Addition Properties Of EqualityChapter 2.2 - Solve Equations Using The Division And Multiplication Properties Of EqualityChapter 2.3 - Solve Equations With Variables And Constants On Both SidesChapter 2.4 - Use A General Strategy To Solve Linear EquationsChapter 2.5 - Solve Equations With Fractions Or DecimalsChapter 2.6 - Solve A Formula For A Specific VariableChapter 2.7 - Solve Linear InequalitiesChapter 3 - Math ModelsChapter 3.1 - Use A Problem-solving StrategyChapter 3.2 - Solve Percent ApplicationsChapter 3.3 - Solve Mixture ApplicationsChapter 3.4 - Solve Geometry Applications: Triangles, Rectangles, And The Pythagorean TheoremChapter 3.5 - Solve Uniform Motion ApplicationsChapter 3.6 - Solve Applications With Linear InequalitiesChapter 4 - GraphsChapter 4.1 - Use The Rectangular Coordinate SystemChapter 4.2 - Graph Linear Equations In Two VariablesChapter 4.3 - Graph With InterceptsChapter 4.4 - Understand Slope Of A LineChapter 4.5 - Use The Slope–intercept Form Of An Equation Of A LineChapter 4.6 - Find The Equation Of A LineChapter 4.7 - Graphs Of Linear InequalitiesChapter 5 - Systems Of Linear EquationsChapter 5.1 - Solve Systems Of Equations By GraphingChapter 5.2 - Solve Systems Of Equations By SubstitutionChapter 5.3 - Solve Systems Of Equations By EliminationChapter 5.4 - Solve Applications With Systems Of EquationsChapter 5.5 - Solve Mixture Applications With Systems Of EquationsChapter 5.6 - Graphing Systems Of Linear InequalitiesChapter 6 - PolynomialsChapter 6.1 - Add And Subtract PolynomialsChapter 6.2 - Use Multiplication Properties Of ExponentsChapter 6.3 - Multiply PolynomialsChapter 6.4 - Special ProductsChapter 6.5 - Divide MonomialsChapter 6.6 - Divide PolynomialsChapter 6.7 - Integer Exponents And Scientific NotationChapter 7 - FactoringChapter 7.1 - Greatest Common Factor And Factor By GroupingChapter 7.2 - Factor Quadratic Trinomials With Leading Coefficient 1Chapter 7.3 - Factor Quadratic Trinomials With Leading Coefficient Other Than 1Chapter 7.4 - Factor Special ProductsChapter 7.5 - General Strategy For Factoring PolynomialsChapter 7.6 - Quadratic EquationsChapter 8 - Rational Expressions And EquationsChapter 8.1 - Simplify Rational ExpressionsChapter 8.2 - Multiply And Divide Rational ExpressionsChapter 8.3 - Add And Subtract Rational Expressions With A Common DenominatorChapter 8.4 - Add And Subtract Rational Expressions With Unlike DenominatorsChapter 8.5 - Simplify Complex Rational ExpressionsChapter 8.6 - Solve Rational EquationsChapter 8.7 - Solve Proportion And Similar Figure ApplicationsChapter 8.8 - Solve Uniform Motion And Work ApplicationsChapter 8.9 - Use Direct And Inverse VariationChapter 9 - Roots And RadicalsChapter 9.1 - Simplify And Use Square RootsChapter 9.2 - Simplify Square RootsChapter 9.3 - Add And Subtract Square RootsChapter 9.4 - Multiply Square RootsChapter 9.5 - Divide Square RootsChapter 9.6 - Solve Equations With Square RootsChapter 9.7 - Higher RootsChapter 9.8 - Rational ExponentsChapter 10 - Quadratic EquationsChapter 10.1 - Solve Quadratic Equations Using The Square Root PropertyChapter 10.2 - Solve Quadratic Equations By Completing The SquareChapter 10.3 - Solve Quadratic Equations Using The Quadratic FormulaChapter 10.4 - Solve Applications Modeled By Quadratic EquationsChapter 10.5 - Graphing Quadratic Equations
Sample Solutions for this Textbook
We offer sample solutions for Elementary Algebra homework problems. See examples below:
More Editions of This Book
Corresponding editions of this textbook are also available below:
ELEMENTARY ALGEBRA VOL 1-2
17th Edition
ISBN: 9781506698205
Elementary Algebra (OER)
17th Edition
ISBN: 9781947172258
Related Algebra Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.