FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Air goes through a Brayton cycle gas turbine, entering the
compressor at 11 °C and 108 kPa. When it reaches the
turbine inlet, the air is at 1,061 °C and 1.23 MPa. What is the
net change in specific enthalpy of the working fluid after going
through the compressor and heat addition processes? You may
assume that the specific heat capacity c, is a constant 1.005
--1.
kJ-kg 1.K1 throughout the whole cycle. Give your answer in
kJ-kg1 to one decimal place.
Air enters an insulated compressor at ambient conditions, 100 kPa, 20 oC at the rate of 0.2 kg/s and exits at 500 K. The isentropic efficiency of the compressor is 70%. What is the exit pressure? How much power is required to drive the compressor? Assume specific heats at room temperatures.
Water vapor in a steady-flow adiabatic turbine 9 MPa
pressure and 600 ° C
temperature, with 20 kPa pressure and 85 percent
dryness
comes out. Ignoring kinetic and potential energy
changes, the turbine's 8
Calculate the required mass flow to generate MW
power.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An adiabatic, steam (H2O) turbine operates in a steady-state, steady-flow manner. With a single inflow and outflow for a mass flow in and out of the turbine. Pressure going into the turbine is 10MPa. The Power output by the turbine is +2045 kWatt and the mass flow rate is 5 kg/sec. Find the Temperature into the turbine.arrow_forwardProblem: Steam enters a condenser tube at 300 kPa and 82% quality. It is cooled by air to 30°C and 300 kPa. The air enters the condenser's tube bundle at 100 kPa, 20°C and leaves at 95 kPa, 50°C. Heat is transferred to the surroundings at a rate of 30 kJ/s. Find the mass flow rate of steam? Air Ú3 = 10 m/s %3D P3 100 kPa Steam T3 20°C - Q=30 kJ/s P = 300 kPa %3D 82% quality P2 = 300 kPa T2 = 30°C P4 = 95 kPa T = 50°C %3!arrow_forwardHydrogen enters turbine of an ericsson cycle at 1500 K and 900 kPa, with a mass flow rate of 1 kg/s. the temperature and pressurs at the inlet to the compressor are 320K and 1500 kPa, respectively. Determine the following: (a) efficiency, (b) Wnet per mass of air. Show the PV and TS diagram. Please show the formulas and solutionsarrow_forward
- Consider Air “with constant specific heats at room temperature" enters a compressor at 100 kPa, 27°C and leaves at 520 kPa and 227 °C, the compressor experiences a heat loss of 22.3 kJ/kg to the surroundings which are at 22°C. What is the entropy generation (kJ/kg.K)?arrow_forwardS. A fluid undergoes a reversible adiabatic compression from 0.5 MPa, 0.2m to 0 m according to the law, pV1.3= c. Calculate the change in enthalpy, entropy and. internal energy. Also, compute the heat transfer and work nonflow during the process.arrow_forwardSteam is expanded isentropically in a turbine from 800 kPa, 250 °C to 200 kPa. How much work is done in this process per kg of water?arrow_forward
- Only question 4 please!arrow_forwardGiven 0.603MW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). a) Calculate the total rate of entropy production b) Calculate the total rate of exergy destruction (W). The dead state temperature is 293.2 K and pressure is 1 bar. c) Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.arrow_forwardBy hand solved pleasearrow_forward
- A steady-state air compressor is used to provide compressed air for an auto shop. Air from the environment at 25 °C, 101 kPa is compressed to 404 kPa in the compressor. If this is a reversible, adiabatic process, how much work is required per kg of air? Assume air behaves like an ideal gas and specific heats are constant.arrow_forwardA turbine, operating under steady- flow conditions, reccives 1000 kg/min of stcam. At the inlet, the pressure is 30 bar, the temperature is 400°C, the velocity At the exit, the pressure is 0.7 bar, the quality is (100%), and the velocity is 100 m/s. If the turbine produced a power output of 9300 KW. By using the energy balance of open system with sutable tables, answer the following: (a) What are the main assumptions ? (b) Calculate dh, AKe ? (c) Calculate the rate of heat transfer between the turbine and surroundings, in kW.arrow_forwardQuestion 3: Superheated steam enters a turbine at 7 MPa, 550°C, and exits at 150kPa a. Draw the system. b. If the process is reversible adiabatic (isentropic), find the final temperature (T2), the final enthalpy (h2,) of the steam, and do the energy balance to calculate the turbine work (Wts). c. Using entropy balance, show that Sgen for the above process is 0. d. If the isentropic efficiency is 85%, find the actual final temperature (T23) and calculate Sgen? e. Plot process in (b) and (d) on a Ts diagram with proper labelling.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license