Concept explainers
Showers According to home-water-works.org, the average shower in the United States lasts 8.2 minutes. Assume this is correct, and assume the standard deviation of 2 minutes.
a. Do you expect the shape of the distribution of shower lengths to be Normal, right-skewed, or left-skewed? Explain.
b. Suppose that we survey a random sample of 100 people to find the length of their last shower. We calculate the
c. Refer to part b. What will be the mean and the standard deviation of the distribution of these sample means?
Learn your wayIncludes step-by-step video
Chapter 9 Solutions
INTRODUCTORY STATISTICS (LOOSELEAF)
Additional Math Textbook Solutions
College Algebra with Modeling & Visualization (5th Edition)
Thinking Mathematically (6th Edition)
Elementary Statistics
Elementary Statistics (13th Edition)
A First Course in Probability (10th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- please solve this problem step by step and make it quick pleasearrow_forward8.67 Free recall memory strategy. Psychologists who study ①memory often use a measure of "free recall" (e.g., the RECALL number of correctly recalled items in a list of to-be- remembered items). The strategy used to memorize the list-for example, category clustering-is often just as important. Researchers at Central Michigan University developed an algorithm for computing measures of cat- egory clustering in Advances in Cognitive Psychology (Oct. 2012). One measure, called ratio of repetition, was recorded for a sample of 8 participants in a memory study. These ratios are listed in the table. Test the theory that the average ratio of repetition for all participants in a similar memory study differs from .5. Select an appropriate Type I error rate for your test. .25 .43 .57 .38 .38 .60 .47 .30 Source: Senkova, O., & Otani, H. "Category clustering calculator for free recall." Advances in Cognitive Psychology, Vol. 8, No. 4, Oct. 2012 (Table 3).arrow_forward8.64 Radon exposure in Egyptian tombs. Refer to the D Radiation Protection Dosimetry (Dec. 2010) study TOMBS of radon exposure in Egyptian tombs, Exercise 7.39 (p. 334). The radon levels-measured in becquerels per cubic meter (Bq/m³)-in the inner chambers of a sam- ple of 12 tombs are listed in the table. For the safety of the guards and visitors, the Egypt Tourism Authority (ETA) will temporarily close the tombs if the true mean level of radon exposure in the tombs rises to 6,000 Bq/m³. Consequently, the ETA wants to conduct a test to deter- mine if the true mean level of radon exposure in the tombs is less than 6,000 Bq/m³, using a Type I error probabil- ity of .10. A SAS analysis of the data is shown on p. 399. Specify all the elements of the test: Ho, Ha, test statistic, p-value, a, and your conclusion. 50 390 910 12100 180 580 7800 4000 3400 1300 11900 1100 N Mean Std Dev Std Err Minimum Maximum 12 3642.5 4486.9 1295.3 50.0000 12100.0arrow_forward
- How does probability help businesses make informed decisions under uncertainty? Provide an example of how businesses use probability in marketing to predict customer behavior. Why is probability considered essential in financial decision-making, particularly in portfolio management? Discuss how the use of probability in inventory management can improve customer satisfaction. Compare the role of probability in marketing and financial decision-making. How do the applications differ in their objectives?arrow_forward55 5.5 A glass bottle manufacturing company has recorded data on the average number of defects per 10,000 bottles due to stones (small pieces of rock embedded in the bottle wall) and the number of weeks since the last furnace overhaul. The data are shown below. Defects per 10,000 Weeks 13.0 4 16.1 5 14.5 6 17.8 7 22.0 8 27.4 9 16.8 10 65.6 ☐☐ Defects per 10,000 Weeks 34.2 11 12 49.2 13 66.2 81.2 87.4 14 15 16 114.5 17 a. Fit a straight-line regression model to the data and perform the standard tests for model adequacy. b. Suggest an appropriate transformation to eliminate the problems encoun- tered in part a. Fit the transformed model and check for adequacy.arrow_forwardOne estimate of the proportion of children with autism in the United States is 1 in 100 (Source: http://www.cbsnews.com/stories/2009/10/05/health/main5363192.shtml). Suppose you are interested in the rate of autism among current school-aged children in Utah. You collect a sample of 400 children between the ages of 5 and 18 and find that three have had a previous diagnosis of an autism disorder. You plan to calculate a 95% confidence interval estimator of the proportion of school-aged children in Utah who have ever had a diagnosis of an autism disorder. Which of the following is the most likely reason you would use a Wilson estimator to calculate the confidence interval estimator? It is uncomfortable to define having been diagnosed with autism as a success. It is possible that if even the actual proportion in Utah is 1%, your sample may only have very few children who have had a previous diagnosis of an autism disorder. It is an easier way to calculate the confidence…arrow_forward
- Problem 2-6. Need help on why its 1.22arrow_forwardScenario: As a data analyst for a retail company, you are tasked with examining the relationship between televisions screen size, and prices. Your analysis will involve both correlation and regression methods to quantify and interpret this relationship Make a Scatterplot of screen size vs. price. Explain in one sentence, does there appear to be a positive or a negative correlation between price and screen size? Paste a snapshot of the plot here. Please do not copy paste. Question 1: What is the value of correlation coefficient between screen size and price? Discuss the direction of the relationship (positive, negative, or zero relationship). Also discuss the strength of the relationship Estimate the relationship between screen size and price using a simple linear regression model and interpret the estimated coefficients. In your interpretation, tell the dollar amount by which price will change for each unit of increase in screen size. (The answer for the second part of this…arrow_forwardvery time you conduct a hypothesis test, there are four possible outcomes of your decision to reject or not reject the null hypothesis: (1) You don’t reject the null hypothesis when it is true, (2) you reject the null hypothesis when it is true, (3) you don’t reject the null hypothesis when it is false, and (4) you reject the null hypothesis when it is false. Consider the following analogy: You are an airport security screener. For every passenger who passes through your security checkpoint, you must decide whether to select the passenger for further screening based on your assessment of whether he or she is carrying a weapon. Suppose your null hypothesis is that the passenger has a weapon. As in hypothesis testing, there are four possible outcomes of your decision: (1) You select the passenger for further inspection when the passenger has a weapon, (2) you allow the passenger to board her flight when the passenger has a weapon, (3) you select the passenger for further inspection when…arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL