
COLLEGE PHYSICS:VOL.1
2nd Edition
ISBN: 9780134862897
Author: ETKINA
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 31P
* Merry-go-round A mechanic needs to replace the motor for a merry-go-round. What torque specifications must the new motor satisfy if the merry-go-round should accelerate from rest to 1.5 rad/s in 8.0 s? You can consider the merry-go-round to be a uniform disk of radius 5.0 m and mass 25,000 kg.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic
energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest.
]
37°
A
©
B
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Chapter 9 Solutions
COLLEGE PHYSICS:VOL.1
Ch. 9 - Review Question 9.1 Visualize an ice skater...Ch. 9 - Review Question 9.2 A solid wooden ball and a...Ch. 9 - Review Question 9.3 How is Newton’s second law for...Ch. 9 - Review Question 9.4 After a playground...Ch. 9 - Review Question 9.5 Will a can of watery chicken...Ch. 9 - Review Question 9.6 How can you explain the...Ch. 9 - Is it easier to open a door that is made of a...Ch. 9 - 2. You push a child on a swing. Why doesn’t the...Ch. 9 - In terms of the torque needed to rotate your leg...Ch. 9 - Suppose that two bicycles have equal overall mass,...
Ch. 9 - When riding a 10-speed bicycle up a hill, a...Ch. 9 - 6 The objects in Figure Q9.6 are made or two...Ch. 9 - 7. Select all the pairs below in which the two...Ch. 9 - If you turn on a coffee grinding machine sitting...Ch. 9 - A bowling ball is rolling without skidding down an...Ch. 9 - 10. The Mississippi River carries sediment from...Ch. 9 - Two disks are cut from the same uniform board. The...Ch. 9 - A spinning raw egg, if stopped momentarily and men...Ch. 9 - Compare the magnitude of Earth's rotational...Ch. 9 - You lay a pencil on a smooth desk (ignore sliding...Ch. 9 - If you watch the dive of an Olympic diver, you...Ch. 9 - 17. Explain why you do not tip over when riding a...Ch. 9 - Prob. 18CQCh. 9 - 19. Why do tightrope walkers carry long, heavy...Ch. 9 - The sweeping second hand on your wall clock is 20...Ch. 9 - 2. You find an old record player in your attic....Ch. 9 - 3. * Consider again the turntable described in the...Ch. 9 - 4. You step on the gas pedal in your car, and the...Ch. 9 - You pull your car into your driveway and stop. The...Ch. 9 - 6. An old wheat-grinding wheel in a museum...Ch. 9 - Centrifuge A centrifuge at the same museum is used...Ch. 9 - Potters wheel A fly sits on a potters wheel 0.30 m...Ch. 9 - 9. * During your tennis serve, your racket and arm...Ch. 9 - 10. * An ant clings to the outside edge of the...Ch. 9 - 11. * The speedometer on a bicycle indicates that...Ch. 9 - * You pedal your bicycle so that its wheel's...Ch. 9 - Mileage gauge The odometer on an automobile...Ch. 9 - *Speedomter The speedometer on an automobile...Ch. 9 - 15 * Ferns wheel A Ferris wheel starts at rest,...Ch. 9 - 16. * You push a disk-shaped platform tangentially...Ch. 9 - s rotational acceleration would be in ran/s2 if...Ch. 9 - 18. A 0.30-kg ball is attached at the end or a...Ch. 9 - 19. Centrifuge A centrifuge with a rotational...Ch. 9 - Airplane turbine what is the average torque needed...Ch. 9 - * A turntable turn ng at rotational speed 33 rpm...Ch. 9 - 22. * The solid pulley in Figure P9.22 consists...Ch. 9 - * The pulley shown in Figure P9.22 is initially...Ch. 9 - The pulley shown in Figure P9.22 is initially...Ch. 9 - 28. Derive an expression Tor the rotational...Ch. 9 - * Repeat the previous problem for an axis...Ch. 9 - Repeat the previous problem for axis BC, which...Ch. 9 - 31. * Merry-go-round A mechanic needs to replace...Ch. 9 - 32. * A small 0.80-kg train propelled by a fan...Ch. 9 - * Motor You wish to buy a motor that will be used...Ch. 9 - 34. ** A string wraps around a 6.0-kg wheel of...Ch. 9 - * Elena, a black belt in tae kwon do, is...Ch. 9 - Prob. 36PCh. 9 - 37. * Fire escape A unique fire escape for a...Ch. 9 - 38. ** An Atwood machine is shown in Example 9.4 ....Ch. 9 - onTruckandF2onbucket that the rope exerts on the...Ch. 9 - * A thin rod of length L and mass m rotates around...Ch. 9 - 41. * (a) Determine the rotaticnal momentum o’ a...Ch. 9 - Ballet A ballet student with her arms and a leg...Ch. 9 - * A 0.20-kg block moves at the end of a 0.50-m...Ch. 9 - * Puck on a string You attach a 100-g puck to a...Ch. 9 - 0. The student then turns the bicycle wheel over...Ch. 9 - 47. Neutron star An extremely dense neutron star...Ch. 9 - 48. * A boy of mass m is standing on the edge of a...Ch. 9 - 50. A grinding wheel with rotational inertia I...Ch. 9 - * The rotational speed of a flywheel increases by...Ch. 9 - B,/KrotA.Ch. 9 - * Flywheel energy for car The U.S. Department of...Ch. 9 - * Flywheel energy Engineers at the University of...Ch. 9 - 56. ** Rotating student A student sitting on a...Ch. 9 - * A turntable whose rotational inertia is...Ch. 9 - 58. **Repeat the previous problem, only assume...Ch. 9 - * Merry-go-round A carnival merry-go-round has a...Ch. 9 - *Est You hold an apple by its stem between your...Ch. 9 - * Stopping Earths rotation Suppose that Superman...Ch. 9 - BIO EST Punting a football Estimate the tangential...Ch. 9 - * BIO Triceps and darts Your upper arm is...Ch. 9 - 66. * BIO Bowling At the start of your throw of a...Ch. 9 - 67. ** Bio Leg lift You are doing one-leg leg...Ch. 9 - * A horizontal, circular platform can rotate...Ch. 9 - 69. * You have an empty cylindrical metal can and...Ch. 9 - ** in the previous problem, each nut has a mass of...Ch. 9 - 71. * Superball If you give a superball backspin...Ch. 9 - Prob. 72GPCh. 9 - 73. * EST White dwarf A star the size of our Sun...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. Which of the following did not occur d...
Cosmic Perspective Fundamentals
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
16. Explain some of the reasons why the human species has been able to expand in number and distribution to a g...
Campbell Biology: Concepts & Connections (9th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
What type of unconformity separates layer G from layer F?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forwardPhysics different from a sea breeze from a land breezearrow_forward
- File Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forwardOk im confused on this portion of the questions being asked. the first snip is the solution you gave which is correct. BUt now it is asking for this and im confused. The magnitude of the force F_11 is __________LB. The direction of the force F_11 is __________LB.arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY