Concept explainers
What is the purpose of a starting relay?
- a. to start an electric motor
- b. to remove the starting winding or component from the circuit
- c. to protect the motor from starting overloads
- d. to prevent the motor from starting under heavy loads
The correct option for the purpose of the starting relay.
Explanation of Solution
The given choices are,
- a) to start an electric motor
- b) to remove the starting winding or component from the circuit
- c) to protect the motor from starting overloads
- d) to prevent the motor from starting under heavy loads
The starting relay is the relay that operates on the principle of back emf. The starting relay is used with a starting winding of single phase motor. This relay control the starting winding, as the single phase motor operates a back emf is produced in the starting winding, this winding acts as the generator that produce back emf which further corresponds to the motor speed. Thus the starting relay is used to drop the starting winding as a predefined back emf is produced in the winding.
Thus, the use of starting relay is to remove the starting winding or component from the circuit.
Thus, the correct option is (b)
Want to see more full solutions like this?
Chapter 9 Solutions
Electricity for Refrigeration, Heating, and Air Conditioning (MindTap Course List)
- Consider a single crystal of silver oriented such that a tensile stress is applied along a [112] direction. If slip occurs on a (011) plane and in a [111] direction and is initiated at an applied tensile stress of 15.9 MPa, compute the critical resolved shear stress.arrow_forwardA hypothetical component must not fail when a tensile stress of 15.25 MPa is applied. Determine the maximum allowable internal crack length if the surface energy of the component is 1.50 J/m2. Assume a modulus of elasticity of 350 GPa.arrow_forwardFresh air at 21.1 C in which partial pressure of water vapor is 0.018 atmosphere is blown at the rate of 214 m3/h first through a preheater and then adiabatically saturated in spray chambers to 100% saturation and again reheated this reheated air has humidity of 0.024 kg water vapor per kg dry air. It is assumed that the fresh air and the air leaving the re-heater have the same percentage humidity. Determine:- a- The temperature of preheater, spray-chamber and re-heater b- Heat requirement for preheating and re-heating 11:39 مarrow_forward
- Example(3): 0.15 kg/s steam at atmospheric pressure and superheated to 400 K is bled into an air stream at 320 K and 20 per cent relative humidity. What is the temperature, enthalpy, and relative humidity of the mixed stream if the air is flowing at 5 kg/ s? How much steam would be required to provide an exit temperature of 330 K and what would be the humidity of this mixture? 11:39 مarrow_forwardThe answer to the problem is 31.3rad/s. Please show me how to get the final answerarrow_forwardThe answer to the problem is 1.00 m/s^2. Please show me how to get the final answerarrow_forward
- The answer to the problem is 0.30. Please show me how to get the final answerarrow_forwardThe answer to the problem is 1.96 m/s. Please show me how to get the final answerarrow_forwardA cylindrical tank of diameter D is currently filled with water to a height h, as shown in the figure to the right. Water enters the tank through the pipe at (1) with a cross-sectional area A₁ and a uniform velocity V₁. The height of water in the tank is increasing at a constant rate of 5 mm/s. Given the parameters below, find the volumetric flow rate in the pipe at (2), V2, in cm³/s, and classify it as an inflow or outflow. D = 20 cm h = 0.5 m A₁ = 1 cm² V₁ = 0.1 m/s h 1 V₁ D Pwater = 1,000 kg/m³ V2 2arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningElectrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning