FUNDAMENTALS OF PHYSICS - EXTENDED
12th Edition
ISBN: 9781119773511
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 1P
A 2.00 kg particle has the xy coordinates (−1.20 m, 0.500 m), and a 4.00 kg particle has the xy coordinates (0.600 m, −0.750 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates (−0.500 m, −0.700 m)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.29 kg particle has the xy coordinates (-1.25 m, 0.116 m), and a 5.32 kg particle has the xy coordinates (0.300 m, -0.345 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 2.97 kg particle such that the center of mass of the three-particle system has the coordinates (-0.308 m, -0.473 m)?
A 1.34 kg particle has the xy coordinates (-1.54 m, 0.660 m), and a 2.30 kg particle has the xy coordinates (0.896 m,-0.181 m). Both lie
on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.87 kg particle such that the center of mass of the three-
particle system has the coordinates (-0.571 m, -0.415 m)?
(a) Number i
(b) Number
Units
Units
A 3.28 kg particle has the xy coordinates (-1.46 m, 0.885 m), and a 2.47 kg particle has the xy coordinates (0.415 m, -0.347 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.79 kg particle such that the center of mass of
the three-particle system has the coordinates (-0.689 m, -0.872 m)?
(a) Number
Units
(b) Number
Units
Chapter 9 Solutions
FUNDAMENTALS OF PHYSICS - EXTENDED
Ch. 9 - A 2.00 kg particle has the xy coordinates 1.20 m,...Ch. 9 - ILW A stone is dropped at t = 0. A second stone,...Ch. 9 - GO A 1000 kg automobile is at rest at a traffic...Ch. 9 - A big olive m = 0.50 kg lies at the origin of an...Ch. 9 - Prob. 12PCh. 9 - GO Ricardo, of mass 80 kg, and Carmelita, who is...Ch. 9 - A 0.70 kg ball moving horizontally at 5.0 m/s...Ch. 9 - A 0.30 kg softball has a velocity of 15 m/s at an...Ch. 9 - In February 1955, a paratrooper fell 370 m from an...Ch. 9 - A 1.2 kg ball drops vertically onto a floor,...
Ch. 9 - In a common but dangerous prank, a chair is pulled...Ch. 9 - SSM A force in the negative direction of an x axis...Ch. 9 - In tae-kwon-do, a hand is slammed down onto a...Ch. 9 - Suppose a gangster sprays Supermans chest with 3 g...Ch. 9 - Jumping up before the elevator hits. After the...Ch. 9 - GO Figure 9-51 shows a 0.300 kg baseball just...Ch. 9 - A 0.25 kg puck is initially stationary on an ice...Ch. 9 - SSM A soccer player kicks a soccer ball of mass...Ch. 9 - SSM A 91 kg man lying on a surface of negligible...Ch. 9 - A space vehicle is traveling at 4300 km/h relative...Ch. 9 - An object, with mass m and speed v relative to an...Ch. 9 - SSM WWW A 20.0 kg body is moving through space in...Ch. 9 - A 4.0 kg mess kit sliding on a frictionless...Ch. 9 - A vessel at rest at the origin of an xy coordinate...Ch. 9 - GO Particle A and particle B are held together...Ch. 9 - A bullet of mass 10 g strikes a ballistic pendulum...Ch. 9 - A 5.20 g bullet moving at 672 m/s strikes a 700 g...Ch. 9 - Prob. 53PCh. 9 - A completely inelastic collision occurs between...Ch. 9 - ILW A 5.0 kg block with a speed of 3.0 m/s...Ch. 9 - SSM A cart with mass 340 g moving on a...Ch. 9 - Two titanium spheres approach each other head-on...Ch. 9 - Block 1 of mass m1 slides along a frictionless...Ch. 9 - SSM A body of mass 2.0 kg makes an elastic...Ch. 9 - Block 1, with mass m1 and speed 4.0 m/s, slides...Ch. 9 - ILW In Fig. 9-21, projectile particle 1 is an...Ch. 9 - Ball B, moving in the positive direction of an x...Ch. 9 - After a completely inelastic collision, two...Ch. 9 - Two 2.0 kg bodies, A and B, collide. The...Ch. 9 - GO A projectile proton with a speed of 500 m/s...Ch. 9 - A 6090 kg space probe moving nose-first toward...Ch. 9 - Prob. 78PCh. 9 - SSM ILW A rocket that is in deep space and...Ch. 9 - An object is tracked by a radar station and...Ch. 9 - The last stage of a rocket, which is traveling at...Ch. 9 - A ball having a mass of 150 g strikes a wall with...Ch. 9 - A spacecraft is separated into two parts by...Ch. 9 - SSM A 1400 kg car moving at 5.3 m/s is initially...Ch. 9 - ILW A certain radioactive parent nucleus...Ch. 9 - A 75 kg man rides on a 39 kg cart moving at a...Ch. 9 - Two blocks of masses 1.0 kg and 3.0 kg are...Ch. 9 - Prob. 93PCh. 9 - An old Chrysler with mass 2400 kg is moving along...Ch. 9 - A rocket is moving away from the solar system at a...Ch. 9 - A 0.15 kg ball hits a wall with a velocity of 5.00...Ch. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Prob. 108PCh. 9 - Prob. 109PCh. 9 - Prob. 110PCh. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117P
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. The Na+ / glucose symport transports glucose from the lumen of the small intestine into cells lining the lu...
Biochemistry: Concepts and Connections (2nd Edition)
41. A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero ord...
Chemistry: Structure and Properties (2nd Edition)
Choose the best answer to etch of the following. Explain your reasoning. Which of these layers of the sun is co...
Cosmic Perspective Fundamentals
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
18. A 1.0 kg block is attached to a spring with spring constant 16 N/m. While the block is sitting at rest, a s...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forwardA water molecule consists of an oxygen atom with two hydrogen atoms bound to it (Fig. P8.36). The angle between the two bonds is 106. If the bonds are 0.100 nm long, where is the center of mass of the molecule? Figure P8.36arrow_forwardTwo metersticks are connected at their ends as shown in Figure P10.18. The center of mass of each individual meterstick is at its midpoint, and the mass of each meterstick is m. a. Where is the center of mass of the two-stick system as depicted in the figure, with the origin located at the intersection of the sticks? b. Can the two-stick system be balanced on the end of your finger so that it remains lying flat in front of you in the orientation shown? Why or why not? FIGURE P10.18 (a) The center of mass of the stick on the x axis would be at (0.5 m, 0), and the center of mass of the stick on the stick on the y axis be at (0, 0.5 m), assuming the sticks are uniform. We can then use Equation 10.3 to find the x and y coordinates of the center of mass. xCM=1Mj=1nmjxj=12m[m(0.50m)]=0.25myCM=1Mj=1nmjyj=12m[m(0.50m)]=0.25m The location of the center of mass is (0.25m,0.25m) (b) No. The location of the center of mass is not located on the object, so your finger would not be in contact with the object. In a different orientation, balancing by applying a force at the center of mass might be possible, but not in the orientation shown.arrow_forward
- A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forwardA uniform piece of sheet metal is shaped as shown in Figure P9.24. Compute the x and y coordinates of the center of mass of the piece. Figure P9.24arrow_forwardA 2.50 kg particle has the xy coordinates (-1.20 m, 0.500 m) and a 5.50 kg particle has the xy coordinates (0.600 m, -0.750 m). Both lie on a horizontal plane. At what x and y coordinates must you place a 2.50 kg particle such that the center of mass of the three-particle system has the coordinates (-0.500 m, -0.700 m)? (a) x coordinate (b) y coordinatearrow_forward
- A 4.30 kg particle has the xy coordinates (-1.39 m, 0.366 m), and a 2.68 kg particle has the xy coordinates (0.733 m, -0.487 m). Both Ilie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.88 kg particle such that the center of mass of the three- particle system has the coordinates (-0.680 m, -0.256 m)? (a) Number i Units (b) Number Unitsarrow_forwardPlease Help!arrow_forwardThe center of mass (or center of gravity) of a two-particle system is at the origin. One particle is located at (3.0 m, 0.0 m) and has a mass of 2.0 kg. The other particle has a mass of 3.0 kg. What is the location of the 3.0-kg particle? O (3.0 m, 0.0 m) O (-3.0 m, 0.0 m) O (2.0 m, 0.0 m) O (-2.0 m, 0.0 m)arrow_forward
- A system of three particles with masses m1 = 3.0 kg, m2 = 4.0 kg and m3 = 8.0 kg is placed on a two dimensional xy plane. The scales on the axes are set by x, = 2.0 m and y, = 2.0 m. y (m) mg m1 * (m) Figure 2 (a) Find out the x coordinate of the system's center of mass. (b) Find out the y coordinate of the system's center of mass. (c) Find out the acceleration of the system if an external force of 5 N acts on it.arrow_forwardThe drawing shows a sulfur dioxide molecule. It consists of two oxygen atoms and a sulfur atom. A sulfur atom is twice as massive as an oxygen atom. Using this information and the data provided in the drawing, find (a) the x coordinate and (b) the y coordinate of the center of mass of the sulfur dioxide molecule. Express your answers in nanometers (1 nm = 10-9 m).arrow_forwardThe figure shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length L = 71 cm. Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box. (a) Number i (b) Number i (c) Number i Units Units Units x 0 < <arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY