Calculus, Single Variable: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134766850
Author: William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.3, Problem 1QC
Evaluate
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
y=f'(x)
1
8
The function f is defined on the closed interval [0,8]. The graph of its derivative f' is shown above.
How many relative minima are there for f(x)?
O
2
6
4
00
60!
5!.7!.15!.33!
•
•
Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of
sin((-1.63, 2.06, 0.57) – (0,0,0)) is
-
0.336
-0.931
-0.587
0.440
0.902
0.607
-0.609
0.146
Chapter 8 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Ch. 8.1 - What change of variable would you use for the...Ch. 8.1 - Prob. 2QCCh. 8.1 - Prob. 3QCCh. 8.1 - Prob. 4QCCh. 8.1 - What change of variables would you use for the...Ch. 8.1 - Prob. 2ECh. 8.1 - What trigonometric identity is useful in...Ch. 8.1 - Prob. 4ECh. 8.1 - Prob. 5ECh. 8.1 - Prob. 6E
Ch. 8.1 - Substitution Review Evaluate the following...Ch. 8.1 - Prob. 8ECh. 8.1 - Substitution Review Evaluate the following...Ch. 8.1 - Prob. 10ECh. 8.1 - Substitution Review Evaluate the following...Ch. 8.1 - Prob. 12ECh. 8.1 - Substitution Review Evaluate the following...Ch. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Subtle substitutions Evaluate the following...Ch. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Prob. 18ECh. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Prob. 20ECh. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Prob. 26ECh. 8.1 - Splitting fractions Evaluate the following...Ch. 8.1 - Prob. 28ECh. 8.1 - Integration review Evaluate the following...Ch. 8.1 - Prob. 30ECh. 8.1 - Completing the square Evaluate the following...Ch. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - Completing the square Evaluate the following...Ch. 8.1 - Prob. 38ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Integration reviewEvaluate the following integrals...Ch. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - Integration reviewEvaluate the following...Ch. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Integration reviewEvaluate the following...Ch. 8.1 - Miscellaneous integrals Use the approaches...Ch. 8.1 - Miscellaneous integrals Use the approaches...Ch. 8.1 - Miscellaneous integrals Use the approaches...Ch. 8.1 - Prob. 57ECh. 8.1 - Prob. 58ECh. 8.1 - Prob. 59ECh. 8.1 - Prob. 60ECh. 8.1 - Miscellaneous integrals Use the approaches...Ch. 8.1 - Prob. 62ECh. 8.1 - Prob. 63ECh. 8.1 - Prob. 64ECh. 8.1 - Prob. 65ECh. 8.1 - Prob. 66ECh. 8.1 - Prob. 67ECh. 8.1 - Prob. 68ECh. 8.1 - Different substitutions a. Evaluate tanxsec2xdx...Ch. 8.1 - Prob. 70ECh. 8.1 - Different methods a. Evaluate x2x+1dx using the...Ch. 8.1 - Prob. 72ECh. 8.1 - Prob. 73ECh. 8.1 - Prob. 74ECh. 8.1 - Volume of a solidConsider the Region R bounded by...Ch. 8.1 - Prob. 76ECh. 8.1 - Surface area Let f(x)=x+1. Find the area of the...Ch. 8.1 - Prob. 78ECh. 8.1 - Prob. 79ECh. 8.1 - Prob. 80ECh. 8.2 - What are the best choices for u and dv in...Ch. 8.2 - Prob. 2QCCh. 8.2 - Prob. 3QCCh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - How would you choose dv when evaluating xneaxdx...Ch. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Integration by partsEvaluate the following...Ch. 8.2 - Integration by parts Evaluate the following...Ch. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Integration by partsEvaluate the following...Ch. 8.2 - Prob. 14ECh. 8.2 - Integration by partsEvaluate the following...Ch. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Integration by parts Evaluate the following...Ch. 8.2 - Integration by parts Evaluate the following...Ch. 8.2 - Integration by parts Evaluate the following...Ch. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Repeated integration by parts Evaluate the...Ch. 8.2 - Repeated integration by parts Evaluate the...Ch. 8.2 - Prob. 26ECh. 8.2 - Integration by partsEvaluate the following...Ch. 8.2 - Repeated integration by parts Evaluate the...Ch. 8.2 - Prob. 29ECh. 8.2 - Repeated integration by parts Evaluate the...Ch. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Definite integrals Evaluate the following definite...Ch. 8.2 - Definite integrals Evaluate the following definite...Ch. 8.2 - Definite integrals Evaluate the following definite...Ch. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Integration by partsEvaluate the following...Ch. 8.2 - Prob. 40ECh. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Volumes of solids Find the volume of the solid...Ch. 8.2 - Volumes of solidsFind the volume of the solid that...Ch. 8.2 - Volumes of solids Find the volume of the solid...Ch. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Prob. 50ECh. 8.2 - Reduction formulas Use integration by parts to...Ch. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Applying reduction formulas Use the reduction...Ch. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Two methods Evaluate 0/3sinxln(cosx)dx in the...Ch. 8.2 - Two methods a. Evaluate xx+1dx using integration...Ch. 8.2 - Prob. 60ECh. 8.2 - Logarithm base b Prove that logbxdx=1lnb(xlnxx)+C.Ch. 8.2 - Prob. 62ECh. 8.2 - Combining two integration methods Evaluate cosxdx...Ch. 8.2 - Prob. 64ECh. 8.2 - Prob. 65ECh. 8.2 - Prob. 66ECh. 8.2 - Prob. 67ECh. 8.2 - Log integrals Use integration by parts to show...Ch. 8.2 - Comparing volumes Let R be the region bounded by y...Ch. 8.2 - Prob. 70ECh. 8.2 - Solid of revolution Find the volume of the solid...Ch. 8.2 - Between the sine and inverse sine Find the area of...Ch. 8.2 - Prob. 73ECh. 8.2 - Integrating inverse functions Assume that f has an...Ch. 8.2 - Oscillator displacements Suppose a mass on a...Ch. 8.2 - Prob. 76ECh. 8.2 - Prob. 77ECh. 8.2 - Practice with tabular integration Evaluate the...Ch. 8.2 - Prob. 79ECh. 8.2 - Prob. 80ECh. 8.2 - Prob. 81ECh. 8.2 - A family of exponentials The curves y = xeax are...Ch. 8.3 - Evaluate sin3xdxby splitting off a factor of sin x...Ch. 8.3 - Prob. 2QCCh. 8.3 - State the half-angle identities used to integrate...Ch. 8.3 - State the three Pythagorean identities.Ch. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Integrals of sin x or cos x Evaluate the following...Ch. 8.3 - Prob. 10ECh. 8.3 - Trigonometric integralsEvaluate the following...Ch. 8.3 - Prob. 12ECh. 8.3 - Integrals of sin x or cos x Evaluate the following...Ch. 8.3 - Integrals of sin x or cos x Evaluate the following...Ch. 8.3 - Integrals of sin x and cos x Evaluate the...Ch. 8.3 - Prob. 16ECh. 8.3 - Integrals of sin x and cos x Evaluate the...Ch. 8.3 - Prob. 18ECh. 8.3 - Trigonometric integrals Evaluate the following...Ch. 8.3 - Prob. 20ECh. 8.3 - Trigonometric integrals Evaluate the following...Ch. 8.3 - Prob. 22ECh. 8.3 - Integrals of sin x and cos x Evaluate the...Ch. 8.3 - Prob. 24ECh. 8.3 - Integrals of sin x and cos x Evaluate the...Ch. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Integrals of tan x or cot x Evaluate the following...Ch. 8.3 - Integrals of tan x or cot x Evaluate the following...Ch. 8.3 - Integrals of tan x or cot x Evaluate the following...Ch. 8.3 - Integrals of tan x or cot x Evaluate the following...Ch. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - Prob. 34ECh. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Prob. 36ECh. 8.3 - Additional integrals Evaluate the following...Ch. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Additional integrals Evaluate the following...Ch. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Prob. 43ECh. 8.3 - Prob. 44ECh. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Prob. 46ECh. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Prob. 49ECh. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.3 - Trigonometric integrals Evaluate the following...Ch. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Additional integrals Evaluate the following...Ch. 8.3 - Integrals involving tan x and sec x Evaluate the...Ch. 8.3 - Prob. 56ECh. 8.3 - Additional integrals Evaluate the following...Ch. 8.3 - Prob. 58ECh. 8.3 - Square roots Evaluate the following integrals. 59....Ch. 8.3 - Prob. 60ECh. 8.3 - Square roots Evaluate the following integrals. 61....Ch. 8.3 - Arc length Find the length of the curve y = ln...Ch. 8.3 - Explain why or why not Determine whether the...Ch. 8.3 - Prob. 64ECh. 8.3 - Prob. 65ECh. 8.3 - Prob. 66ECh. 8.3 - Integrals of the form sinmxcosnxdx Use the...Ch. 8.3 - Prob. 68ECh. 8.3 - Prob. 69ECh. 8.3 - Prob. 70ECh. 8.3 - Prob. 71ECh. 8.3 - Prob. 72ECh. 8.3 - Prob. 73ECh. 8.3 - Prob. 74ECh. 8.3 - Prob. 75ECh. 8.4 - Use a substitution of the form x = a sin to...Ch. 8.4 - Prob. 2QCCh. 8.4 - Prob. 3QCCh. 8.4 - What change of variables is suggested by an...Ch. 8.4 - What change of variables is suggested by an...Ch. 8.4 - What change of variables is suggested by an...Ch. 8.4 - If x = 4 tan , express sin in terms of x.Ch. 8.4 - If x = 2 sin , express cot in terms of x.Ch. 8.4 - If x = 8 sec , express tan in terms of x.Ch. 8.4 - Sine substitution Evaluate the following...Ch. 8.4 - Prob. 8ECh. 8.4 - Sine substitution Evaluate the following...Ch. 8.4 - Sine substitution Evaluate the following...Ch. 8.4 - Sine substitution Evaluate the following...Ch. 8.4 - Sine substitution Evaluate the following...Ch. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 22ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 24ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 26ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 34ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 44ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Prob. 49ECh. 8.4 - Prob. 50ECh. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Trigonometric substitutions Evaluate the following...Ch. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Prob. 57ECh. 8.4 - Prob. 58ECh. 8.4 - Area of a segment of a circle Use two approaches...Ch. 8.4 - Completing the square Evaluate the following...Ch. 8.4 - Completing the squareEvaluate the following...Ch. 8.4 - Prob. 62ECh. 8.4 - Completing the square Evaluate the following...Ch. 8.4 - Prob. 64ECh. 8.4 - Prob. 65ECh. 8.4 - Prob. 66ECh. 8.4 - Prob. 67ECh. 8.4 - Prob. 68ECh. 8.4 - Prob. 69ECh. 8.4 - Prob. 70ECh. 8.4 - Prob. 71ECh. 8.4 - Prob. 72ECh. 8.4 - Prob. 73ECh. 8.4 - Prob. 74ECh. 8.4 - Prob. 75ECh. 8.4 - Prob. 76ECh. 8.4 - Prob. 77ECh. 8.4 - Prob. 78ECh. 8.4 - Prob. 79ECh. 8.4 - Prob. 80ECh. 8.4 - Prob. 81ECh. 8.4 - Prob. 82ECh. 8.4 - Prob. 83ECh. 8.4 - Prob. 85ECh. 8.4 - Prob. 86ECh. 8.5 - Find an antiderivative of f(x)=1x2+2x+4.Ch. 8.5 - Prob. 2QCCh. 8.5 - Prob. 3QCCh. 8.5 - Prob. 4QCCh. 8.5 - Prob. 1ECh. 8.5 - Give an example of each of the following. a. A...Ch. 8.5 - What term(s) should appear in the partial fraction...Ch. 8.5 - What is the first step in integrating x2+2x3x+1?Ch. 8.5 - Set up the appropriate form of the partial...Ch. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Set up the appropriate form of the partial...Ch. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Set up the appropriate form of the partial...Ch. 8.5 - Set up the appropriate form of the partial...Ch. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Setting up partial fraction decomposition Give the...Ch. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Give the partial fraction decomposition for the...Ch. 8.5 - Prob. 22ECh. 8.5 - IntegrationEvaluate the following integrals....Ch. 8.5 - Prob. 24ECh. 8.5 - IntegrationEvaluate the following integrals. 25....Ch. 8.5 - Simple linear factors Evaluate the following...Ch. 8.5 - IntegrationEvaluate the following integrals. 27....Ch. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - IntegrationEvaluate the following integrals. 30....Ch. 8.5 - Prob. 31ECh. 8.5 - Integration Evaluate the following integrals. 32....Ch. 8.5 - Integration Evaluate the following integrals. 33....Ch. 8.5 - Prob. 34ECh. 8.5 - Simple linear factors Evaluate the following...Ch. 8.5 - Prob. 36ECh. 8.5 - Simple linear factors Evaluate the following...Ch. 8.5 - Prob. 38ECh. 8.5 - Repeated linear factors Evaluate the following...Ch. 8.5 - Prob. 40ECh. 8.5 - Repeated linear factors Evaluate the following...Ch. 8.5 - Prob. 42ECh. 8.5 - Repeated linear factors Evaluate the following...Ch. 8.5 - Repeated linear factors Evaluate the following...Ch. 8.5 - Repeated linear factors Evaluate the following...Ch. 8.5 - Prob. 46ECh. 8.5 - Integration Evaluate the following integrals. 47....Ch. 8.5 - Prob. 48ECh. 8.5 - Prob. 49ECh. 8.5 - Integration Evaluate the following integrals. 50....Ch. 8.5 - Integration Evaluate the following integrals. 51....Ch. 8.5 - Prob. 52ECh. 8.5 - Prob. 53ECh. 8.5 - Prob. 54ECh. 8.5 - Integration Evaluate the following integrals. 55....Ch. 8.5 - Prob. 56ECh. 8.5 - Prob. 57ECh. 8.5 - Prob. 58ECh. 8.5 - Integration Evaluate the following integrals. 59....Ch. 8.5 - Prob. 60ECh. 8.5 - Prob. 61ECh. 8.5 - Prob. 62ECh. 8.5 - Prob. 63ECh. 8.5 - Prob. 64ECh. 8.5 - Prob. 65ECh. 8.5 - Prob. 66ECh. 8.5 - Areas of regions Find the area of the following...Ch. 8.5 - Prob. 68ECh. 8.5 - Prob. 69ECh. 8.5 - Prob. 70ECh. 8.5 - Volumes of solids Find the volume of the following...Ch. 8.5 - Prob. 72ECh. 8.5 - Prob. 73ECh. 8.5 - Prob. 76ECh. 8.5 - Prob. 77ECh. 8.5 - Prob. 78ECh. 8.5 - Prob. 79ECh. 8.5 - Prob. 80ECh. 8.5 - Prob. 81ECh. 8.5 - Prob. 82ECh. 8.5 - Prob. 83ECh. 8.5 - Prob. 84ECh. 8.5 - Prob. 85ECh. 8.5 - Prob. 86ECh. 8.5 - Prob. 87ECh. 8.5 - Prob. 88ECh. 8.5 - Prob. 89ECh. 8.5 - Prob. 90ECh. 8.5 - Prob. 91ECh. 8.5 - Prob. 92ECh. 8.5 - Prob. 93ECh. 8.5 - Prob. 94ECh. 8.5 - Prob. 95ECh. 8.5 - Prob. 96ECh. 8.6 - Use Table 8.1 (p. 520) to complete the process of...Ch. 8.6 - Prob. 2QCCh. 8.6 - Prob. 3QCCh. 8.6 - Prob. 1ECh. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - Prob. 4ECh. 8.6 - Prob. 5ECh. 8.6 - Prob. 6ECh. 8.6 - Evaluate the following integrals. 7. 0/2sin1+cosdCh. 8.6 - Prob. 8ECh. 8.6 - Evaluate the following integrals. 9. 46dx8xx2Ch. 8.6 - Prob. 10ECh. 8.6 - Prob. 11ECh. 8.6 - Prob. 12ECh. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - Evaluate the following integrals. 15. 142xxdxCh. 8.6 - Evaluate the following integrals. 16. dxx41Ch. 8.6 - Prob. 17ECh. 8.6 - Prob. 18ECh. 8.6 - Prob. 19ECh. 8.6 - Prob. 20ECh. 8.6 - Evaluate the following integrals. 21. x9ln3xdxCh. 8.6 - Prob. 22ECh. 8.6 - Evaluate the following integrals. 23....Ch. 8.6 - Prob. 24ECh. 8.6 - Evaluate the following integrals. 25. dxx1x2Ch. 8.6 - Evaluate the following integrals. 26....Ch. 8.6 - Prob. 27ECh. 8.6 - Prob. 28ECh. 8.6 - Evaluate the following integrals. 29....Ch. 8.6 - Prob. 30ECh. 8.6 - Evaluate the following integrals. 31. 369x2dxCh. 8.6 - Prob. 32ECh. 8.6 - Prob. 33ECh. 8.6 - Prob. 34ECh. 8.6 - Evaluate the following integrals. 35....Ch. 8.6 - Prob. 36ECh. 8.6 - Prob. 37ECh. 8.6 - Prob. 38ECh. 8.6 - Prob. 39ECh. 8.6 - Prob. 40ECh. 8.6 - Prob. 41ECh. 8.6 - Prob. 42ECh. 8.6 - Evaluate the following integrals. 43. x91x20dxCh. 8.6 - Prob. 44ECh. 8.6 - Prob. 45ECh. 8.6 - Prob. 46ECh. 8.6 - Prob. 47ECh. 8.6 - Prob. 48ECh. 8.6 - Prob. 49ECh. 8.6 - Prob. 50ECh. 8.6 - Evaluate the following integrals. 51....Ch. 8.6 - Prob. 52ECh. 8.6 - Prob. 53ECh. 8.6 - Prob. 54ECh. 8.6 - Evaluate the following integrals. 55....Ch. 8.6 - Prob. 56ECh. 8.6 - Evaluate the following integrals. 57. sinxdxCh. 8.6 - Evaluate the following integrals. 58. w2tan1wdwCh. 8.6 - Prob. 59ECh. 8.6 - Prob. 60ECh. 8.6 - Prob. 61ECh. 8.6 - Prob. 62ECh. 8.6 - Prob. 63ECh. 8.6 - Prob. 64ECh. 8.6 - Evaluate the following integrals. 65. 01/6dx19x2Ch. 8.6 - Prob. 66ECh. 8.6 - Evaluate the following integrals. 67. x219x2dxCh. 8.6 - Prob. 68ECh. 8.6 - Prob. 69ECh. 8.6 - Prob. 70ECh. 8.6 - Prob. 71ECh. 8.6 - Evaluate the following integrals. 72. x2sinhxdxCh. 8.6 - Prob. 73ECh. 8.6 - Evaluate the following integrals. 74. e3xex1dxCh. 8.6 - Prob. 75ECh. 8.6 - Evaluate the following integrals. 76. xx2+6x+18dxCh. 8.6 - Evaluate the following integrals. 77. cos1xdxCh. 8.6 - Prob. 78ECh. 8.6 - Prob. 79ECh. 8.6 - Prob. 80ECh. 8.6 - Prob. 81ECh. 8.6 - Prob. 82ECh. 8.6 - Evaluate the following integrals. 83....Ch. 8.6 - Prob. 84ECh. 8.6 - Prob. 85ECh. 8.6 - Prob. 86ECh. 8.6 - Prob. 87ECh. 8.6 - Prob. 88ECh. 8.6 - Prob. 89ECh. 8.6 - Prob. 90ECh. 8.6 - Prob. 91ECh. 8.6 - Prob. 92ECh. 8.6 - Evaluate the following integrals. 93....Ch. 8.6 - Prob. 94ECh. 8.6 - Prob. 95ECh. 8.6 - Prob. 96ECh. 8.6 - Prob. 97ECh. 8.6 - Prob. 98ECh. 8.6 - Surface area Find the area of the surface...Ch. 8.7 - Use the result of Example 3 to evaluate...Ch. 8.7 - Prob. 2QCCh. 8.7 - Prob. 3QCCh. 8.7 - Prob. 1ECh. 8.7 - Prob. 2ECh. 8.7 - Prob. 3ECh. 8.7 - Prob. 4ECh. 8.7 - Prob. 5ECh. 8.7 - Prob. 6ECh. 8.7 - Prob. 7ECh. 8.7 - Prob. 8ECh. 8.7 - Prob. 9ECh. 8.7 - Prob. 10ECh. 8.7 - Prob. 11ECh. 8.7 - Prob. 12ECh. 8.7 - Prob. 13ECh. 8.7 - Prob. 14ECh. 8.7 - Prob. 15ECh. 8.7 - Prob. 16ECh. 8.7 - Prob. 17ECh. 8.7 - Prob. 18ECh. 8.7 - Preliminary work Use a table of integrals to...Ch. 8.7 - Prob. 20ECh. 8.7 - Preliminary work Use a table of integrals to...Ch. 8.7 - Prob. 22ECh. 8.7 - Prob. 23ECh. 8.7 - Prob. 24ECh. 8.7 - Prob. 25ECh. 8.7 - Prob. 26ECh. 8.7 - Prob. 27ECh. 8.7 - Prob. 28ECh. 8.7 - Prob. 29ECh. 8.7 - Prob. 30ECh. 8.7 - Preliminary work Use a table of integrals to...Ch. 8.7 - Prob. 32ECh. 8.7 - Prob. 33ECh. 8.7 - Prob. 34ECh. 8.7 - Prob. 35ECh. 8.7 - Prob. 36ECh. 8.7 - Prob. 37ECh. 8.7 - Prob. 38ECh. 8.7 - Prob. 39ECh. 8.7 - Prob. 40ECh. 8.7 - Prob. 41ECh. 8.7 - Prob. 42ECh. 8.7 - Prob. 43ECh. 8.7 - Prob. 44ECh. 8.7 - Prob. 45ECh. 8.7 - Prob. 46ECh. 8.7 - Prob. 47ECh. 8.7 - Prob. 48ECh. 8.7 - Prob. 65ECh. 8.7 - Prob. 66ECh. 8.7 - Prob. 67ECh. 8.7 - Prob. 68ECh. 8.7 - Prob. 71ECh. 8.7 - Prob. 72ECh. 8.7 - Prob. 73ECh. 8.7 - Prob. 74ECh. 8.7 - Apparent discrepancy Resolve the apparent...Ch. 8.7 - Prob. 83ECh. 8.7 - Prob. 84ECh. 8.7 - Prob. 86ECh. 8.8 - To apply the Midpoint Rule on the interval [3, 11]...Ch. 8.8 - Prob. 2QCCh. 8.8 - Prob. 3QCCh. 8.8 - Prob. 4QCCh. 8.8 - Prob. 5QCCh. 8.8 - Prob. 6QCCh. 8.8 - Prob. 1ECh. 8.8 - Prob. 2ECh. 8.8 - Prob. 3ECh. 8.8 - Prob. 4ECh. 8.8 - Prob. 5ECh. 8.8 - Prob. 6ECh. 8.8 - Prob. 7ECh. 8.8 - Prob. 8ECh. 8.8 - If the Trapezoid Rule is used on the interval [1,...Ch. 8.8 - Prob. 10ECh. 8.8 - Prob. 11ECh. 8.8 - Prob. 12ECh. 8.8 - Midpoint Rule approximations Find the indicated...Ch. 8.8 - Prob. 16ECh. 8.8 - Prob. 17ECh. 8.8 - Prob. 18ECh. 8.8 - Trapezoid Rule approximations Find the indicated...Ch. 8.8 - Trapezoid Rule approximations Find the indicated...Ch. 8.8 - Trapezoid Rule approximations Find the indicated...Ch. 8.8 - Trapezoid Rule approximations Find the indicated...Ch. 8.8 - Simpsons Rule approximations Find the indicated...Ch. 8.8 - Simpsons Rule approximations Find the indicated...Ch. 8.8 - Simpsons Rule approximations Find the indicated...Ch. 8.8 - Prob. 26ECh. 8.8 - Prob. 27ECh. 8.8 - Prob. 28ECh. 8.8 - Prob. 29ECh. 8.8 - Comparing the Midpoint and Trapezoid Rules Apply...Ch. 8.8 - Prob. 31ECh. 8.8 - Prob. 32ECh. 8.8 - Prob. 33ECh. 8.8 - Prob. 34ECh. 8.8 - Prob. 35ECh. 8.8 - Prob. 36ECh. 8.8 - Prob. 37ECh. 8.8 - Prob. 38ECh. 8.8 - Prob. 39ECh. 8.8 - Prob. 40ECh. 8.8 - Nonuniform grids Use the indicated methods to...Ch. 8.8 - Prob. 42ECh. 8.8 - Prob. 43ECh. 8.8 - Prob. 44ECh. 8.8 - Prob. 45ECh. 8.8 - Prob. 46ECh. 8.8 - Prob. 47ECh. 8.8 - Prob. 48ECh. 8.8 - Prob. 49ECh. 8.8 - Prob. 50ECh. 8.8 - Simpsons Rule Apply Simpsons Rule to the following...Ch. 8.8 - Prob. 52ECh. 8.8 - Explain why or why not Determine whether the...Ch. 8.8 - Prob. 54ECh. 8.8 - Prob. 55ECh. 8.8 - Prob. 56ECh. 8.8 - Prob. 57ECh. 8.8 - Prob. 58ECh. 8.8 - Prob. 59ECh. 8.8 - Prob. 60ECh. 8.8 - Prob. 61ECh. 8.8 - Prob. 62ECh. 8.8 - Prob. 63ECh. 8.8 - Prob. 64ECh. 8.8 - Prob. 65ECh. 8.8 - Prob. 66ECh. 8.8 - Estimating error Refer to Theorem 8.1 in the...Ch. 8.8 - Prob. 68ECh. 8.8 - Prob. 69ECh. 8.8 - Prob. 70ECh. 8.8 - Prob. 71ECh. 8.8 - Prob. 72ECh. 8.8 - Prob. 73ECh. 8.8 - Prob. 74ECh. 8.8 - Exact Simpsons Rule a. Use Simpsons Rule to...Ch. 8.8 - Prob. 76ECh. 8.8 - Trapezoid Rule and concavity Suppose f is positive...Ch. 8.8 - Prob. 78ECh. 8.8 - Prob. 79ECh. 8.9 - The function f(x) = 1 + x 1 decreases to 1 as x ....Ch. 8.9 - Prob. 2QCCh. 8.9 - Prob. 3QCCh. 8.9 - Prob. 4QCCh. 8.9 - What are the two general ways in which an improper...Ch. 8.9 - Evaluate 2dxx3 after writing the expression as a...Ch. 8.9 - Prob. 3ECh. 8.9 - Evaluate 01dxx1/5 after writing the integral as a...Ch. 8.9 - Write limaa0f(x)dx+limb0bf(x)dxas an improper...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Prob. 10ECh. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Prob. 12ECh. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Prob. 14ECh. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 17ECh. 8.9 - Prob. 18ECh. 8.9 - Prob. 19ECh. 8.9 - Prob. 20ECh. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Prob. 24ECh. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 26ECh. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 28ECh. 8.9 - Prob. 29ECh. 8.9 - Prob. 30ECh. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 33ECh. 8.9 - Prob. 34ECh. 8.9 - Prob. 35ECh. 8.9 - Infinite intervals of integration Evaluate the...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 40ECh. 8.9 - Integrals with unbounded integrands Evaluate the...Ch. 8.9 - Prob. 42ECh. 8.9 - Prob. 43ECh. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 46ECh. 8.9 - Integrals with unbounded integrands Evaluate the...Ch. 8.9 - Integrals with unbounded integrands Evaluate the...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 50ECh. 8.9 - Integrals with unbounded integrands Evaluate the...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 54ECh. 8.9 - Prob. 55ECh. 8.9 - Improper integrals Evaluate the following...Ch. 8.9 - Prob. 57ECh. 8.9 - Prob. 58ECh. 8.9 - Perpetual annuity Imagine that today you deposit B...Ch. 8.9 - Draining a pool Water is drained from a swimming...Ch. 8.9 - Bioavailability When a drug is given...Ch. 8.9 - Electronic chips Suppose the probability that a...Ch. 8.9 - Prob. 63ECh. 8.9 - Prob. 64ECh. 8.9 - Prob. 65ECh. 8.9 - Prob. 66ECh. 8.9 - Volumes on infinite intervals Find the volume of...Ch. 8.9 - Prob. 68ECh. 8.9 - Volumes on infinite intervals Find the volume of...Ch. 8.9 - Prob. 70ECh. 8.9 - Volumes with infinite integrands Find the volume...Ch. 8.9 - Prob. 72ECh. 8.9 - Prob. 73ECh. 8.9 - Prob. 74ECh. 8.9 - Volumes with infinite integrands Find the volume...Ch. 8.9 - Prob. 76ECh. 8.9 - Comparison Test Determine whether the following...Ch. 8.9 - Prob. 78ECh. 8.9 - Prob. 79ECh. 8.9 - Prob. 80ECh. 8.9 - Comparison Test Determine whether the following...Ch. 8.9 - Prob. 82ECh. 8.9 - Comparison Test Determine whether the following...Ch. 8.9 - Comparison Test Determine whether the following...Ch. 8.9 - Prob. 85ECh. 8.9 - Prob. 86ECh. 8.9 - Explain why or why not Determine whether the...Ch. 8.9 - Incorrect calculation a. What is wrong with this...Ch. 8.9 - Prob. 89ECh. 8.9 - Prob. 90ECh. 8.9 - Prob. 91ECh. 8.9 - Prob. 92ECh. 8.9 - Prob. 93ECh. 8.9 - Prob. 94ECh. 8.9 - Prob. 95ECh. 8.9 - Prob. 96ECh. 8.9 - Prob. 97ECh. 8.9 - Prob. 98ECh. 8.9 - Prob. 99ECh. 8.9 - Prob. 100ECh. 8.9 - Many methods needed Show that 0xlnx(1+x)2dx = in...Ch. 8.9 - Prob. 102ECh. 8.9 - Prob. 103ECh. 8.9 - Prob. 104ECh. 8.9 - Prob. 105ECh. 8.9 - Prob. 106ECh. 8.9 - Prob. 107ECh. 8.9 - Prob. 108ECh. 8.9 - Prob. 109ECh. 8.9 - Prob. 110ECh. 8.9 - Prob. 111ECh. 8.9 - Prob. 112ECh. 8 - Explain why or why not Determine whether the...Ch. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - Prob. 11RECh. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - Prob. 20RECh. 8 - Prob. 21RECh. 8 - Prob. 22RECh. 8 - Prob. 23RECh. 8 - Prob. 24RECh. 8 - Prob. 25RECh. 8 - Prob. 26RECh. 8 - Prob. 27RECh. 8 - Prob. 28RECh. 8 - Prob. 29RECh. 8 - Prob. 30RECh. 8 - Prob. 31RECh. 8 - Integration techniques Use the methods introduced...Ch. 8 - Prob. 33RECh. 8 - Prob. 34RECh. 8 - Prob. 35RECh. 8 - Prob. 36RECh. 8 - Partial fractions Use partial fractions to...Ch. 8 - Prob. 38RECh. 8 - Prob. 39RECh. 8 - Prob. 40RECh. 8 - Prob. 41RECh. 8 - Prob. 42RECh. 8 - Prob. 43RECh. 8 - Prob. 44RECh. 8 - Prob. 45RECh. 8 - Prob. 46RECh. 8 - Prob. 47RECh. 8 - Prob. 48RECh. 8 - Prob. 49RECh. 8 - Prob. 50RECh. 8 - Prob. 51RECh. 8 - Prob. 52RECh. 8 - Prob. 53RECh. 8 - Prob. 54RECh. 8 - Prob. 55RECh. 8 - Prob. 56RECh. 8 - Prob. 57RECh. 8 - Prob. 58RECh. 8 - Prob. 59RECh. 8 - Prob. 60RECh. 8 - Prob. 61RECh. 8 - Prob. 62RECh. 8 - Prob. 63RECh. 8 - Miscellaneous Integrals Evaluate the following...Ch. 8 - Prob. 65RECh. 8 - Prob. 66RECh. 8 - Prob. 67RECh. 8 - Prob. 68RECh. 8 - Preliminary work Make a change of variables or use...Ch. 8 - Prob. 70RECh. 8 - Prob. 71RECh. 8 - Prob. 72RECh. 8 - Prob. 73RECh. 8 - Prob. 74RECh. 8 - Prob. 75RECh. 8 - Prob. 76RECh. 8 - Prob. 77RECh. 8 - Prob. 78RECh. 8 - Prob. 79RECh. 8 - Prob. 80RECh. 8 - Prob. 81RECh. 8 - Improper integrals Evaluate the following...Ch. 8 - Prob. 83RECh. 8 - Prob. 84RECh. 8 - Improper integrals Evaluate the following...Ch. 8 - Improper integrals Evaluate the following...Ch. 8 - Prob. 87RECh. 8 - Prob. 88RECh. 8 - Prob. 89RECh. 8 - Prob. 90RECh. 8 - Prob. 91RECh. 8 - Prob. 92RECh. 8 - Prob. 93RECh. 8 - Prob. 94RECh. 8 - Numerical integration Estimate the following...Ch. 8 - Prob. 96RECh. 8 - Numerical integration Estimate the following...Ch. 8 - Prob. 98RECh. 8 - Improper integrals by numerical methods Use the...Ch. 8 - Prob. 100RECh. 8 - Prob. 101RECh. 8 - Prob. 102RECh. 8 - Prob. 103RECh. 8 - Prob. 104RECh. 8 - Prob. 105RECh. 8 - Prob. 106RECh. 8 - Prob. 107RECh. 8 - Prob. 108RECh. 8 - Prob. 109RECh. 8 - Comparing distances Starting at the same time and...Ch. 8 - Prob. 111RECh. 8 - Prob. 112RECh. 8 - Prob. 113RECh. 8 - Arc length of the natural logarithm Consider the...Ch. 8 - Prob. 115RECh. 8 - Prob. 116RECh. 8 - Prob. 117RECh. 8 - Prob. 118RECh. 8 - Comparing volumes Let R be the region bounded by y...Ch. 8 - Prob. 120RECh. 8 - Prob. 121RECh. 8 - Prob. 122RECh. 8 - Prob. 123RECh. 8 - Prob. 124RECh. 8 - Prob. 125RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- The value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forwardA: Tan Latitude / Tan P A = Tan 04° 30'/ Tan 77° 50.3' A= 0.016960 803 S CA named opposite to latitude, except when hour angle between 090° and 270°) B: Tan Declination | Sin P B Tan 052° 42.1'/ Sin 77° 50.3' B = 1.34 2905601 SCB is alway named same as declination) C = A + B = 1.35 9866404 S CC correction, A+/- B: if A and B have same name - add, If different name- subtract) = Tan Azimuth 1/Ccx cos Latitude) Tan Azimuth = 0.737640253 Azimuth = S 36.4° E CAzimuth takes combined name of C correction and Hour Angle - If LHA is between 0° and 180°, it is named "west", if LHA is between 180° and 360° it is named "east" True Azimuth= 143.6° Compass Azimuth = 145.0° Compass Error = 1.4° West Variation 4.0 East Deviation: 5.4 Westarrow_forward
- ds 5. Find a solution to this initial value problem: 3t2, s(0) = 5. dt 6. Find a solution to this initial value problem: A' = 0.03A, A(0) = 100.arrow_forward2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The system contains both external and internal damping. Show that the system loses the reciprocity property.arrow_forward1) Show that the force response of a MDOF system with general damping can be written as: X liax) -Σ = ral iw-s, + {0} iw-s,arrow_forward
- 3) Prove that in extracting real mode ø, from a complex measured mode o, by maximizing the function: maz | ቀÇቃ | ||.|| ||.||2 is equivalent to the solution obtained from the followings: max Real(e)||2arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. L1 (a) The line L₁ is tangent to the unit circle at the point 0.992 (b) The tangent line 4₁ has equation: y= 0.126 x +0.992 (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line L₂ has equation: y= 0.380 x + x × x)arrow_forwardThe cup on the 9th hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec. Introduce coordinates so that the cup is the origin of an xy-coordinate system and start by writing down the equations of the circle and the linear path of the ball. Provide numerical answers below with two decimal places of accuracy. 50 feet green ball 40 feet 9 cup ball path rough (a) The x-coordinate of the position where the ball enters the green will be (b) The ball will exit the green exactly seconds after it is hit. (c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q: smallest x-coordinate =…arrow_forward
- Draw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. P L1 L (a) The line L₁ is tangent to the unit circle at the point (b) The tangent line L₁ has equation: X + (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line 42 has equation: y= x + ).arrow_forwardWhat is a solution to a differential equation? We said that a differential equation is an equation that describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential equation, we mean simply a function that satisfies this description. 2. Here is a differential equation which describes an unknown position function s(t): ds dt 318 4t+1, ds (a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate you really do get 4t +1. and check that dt' (b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation? (c) Is s(t)=2t2 + 3t also a solution to this differential equation? ds 1 dt (d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the right side of the equation by multiplying, and then integrate both sides. What do you get? (e) Does this differential equation have a unique solution, or an infinite family of solutions?arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY