
Vector Mechanics for Engineers: Statics, 11th Edition
11th Edition
ISBN: 9780077687304
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.1, Problem 8.1FBP
Knowing that the coefficient of friction between the 25-kg block and the incline is μs = 0.25, draw the free-body diagram needed to determine both the smallest value of P required to start the block moving up the incline and the corresponding value of β.
Fig. P8.F1
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A start-up company wants to convert an ICE vehicle into an electric vehicle with the following specification.
Power: 250 (HP) horsepower, (note: 1HP = 745 W)
Range: 300-miles
Fuel economy: 33.5 kilometers per gallon of gasoline.
Efficiency of the ICE: 25%
Energy Conversion: One gallon of gasoline at 100% efficiency is equal to 33.5 kWh/gallon).
a)Calculate the EV consumption rate as Wh/km and find the total energy of the battery pack in KWh to replace the internal combustion engine.
b)Design an 8-module battery pack for this full electric vehicle without compromising its range and performance (power).
Use commercially available cylindrical cells lithium cell with 20Ah capacity and 3.125 V average voltage. Cell dimensions are 5cm diameter and 10 cm height. The electric motor requires 250 V input that will be provided directly from the battery pack, Report the configuration of each module in…
"11-17 The shaft shown in Figure P11-3 was designed in Problem 10-17. For the data in the
row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in
Problem 10-17, design suitable bearings to support the load for at least 1E8 cycles at
1800 rpm. State all assumptions.
(a)
Using hydrodynamically lubricated bronze sleeve bearings with Ox = 15,
11d=0.75, and a clearance ratio of 0.001.
✓ ✓
cast-iron roller
FIGURE P11-3
Shaft Design for Problems 11-17
b
gear
key
assume bearings act
as simple supports
11-19 The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in the
row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in
Problem 10-19, design suitable bearings to support the load for at least 5E8 cycles at
1200 rpm. State all assumptions.
(a)
Using hydrodynamically lubricated bronze sleeve bearings with Oy = 40,
1/d=0.80, and a clearance ratio of 0.002 5.
gear
gear
key
FIGURE P11-4
Shaft Design for Problems 11-19 and…
For the frame below calculate the bending moment at point R. Take P=40 and note that this value is used for both
the loads and the lengths of the members of the frame.
2.5P-
A
Q
B
R
С
45 degrees
✗
✗
P
i
19
Кур
-2P-
4PRN
-P-
-
Chapter 8 Solutions
Vector Mechanics for Engineers: Statics, 11th Edition
Ch. 8.1 - Knowing that the coefficient of friction between...Ch. 8.1 - Two blocks A and B are connected by a cable as...Ch. 8.1 - A cord is attached to and partially wound around a...Ch. 8.1 - A 40-kg packing crate must be moved to the left...Ch. 8.1 - 8.1 Determine whether the block shown is in...Ch. 8.1 - Prob. 8.2PCh. 8.1 - Prob. 8.3PCh. 8.1 - 8.4 Determine whether the block shown is in...Ch. 8.1 - Prob. 8.5PCh. 8.1 - The 20-lb block A hangs from a cable as shown....
Ch. 8.1 - The 10-kg block is attached to link AB and rests...Ch. 8.1 - Considering only values of less than 90,...Ch. 8.1 - Prob. 8.9PCh. 8.1 - 8.10 Knowing that P = 100 N, determine the range...Ch. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - Three 4-kg packages A, B, and C are placed on a...Ch. 8.1 - Solve Prob. 8.13 assuming that package B is placed...Ch. 8.1 - A uniform crate with a mass of 30 kg must be moved...Ch. 8.1 - A worker slowly moves a 50-kg crate to the left...Ch. 8.1 - Prob. 8.17PCh. 8.1 - 8.18 A 120-lb cabinet is mounted on casters that...Ch. 8.1 - Prob. 8.19PCh. 8.1 - Solve Prob. 8.19 assuming that the coefficients of...Ch. 8.1 - Prob. 8.21PCh. 8.1 - The cylinder shown has a weight W and radius r,...Ch. 8.1 - 8.23 and 8.24 End A of a slender, uniform rod with...Ch. 8.1 - Prob. 8.24PCh. 8.1 - A 6. 5-m ladder AB leans against a wall as shown....Ch. 8.1 - A 6. 5-m ladder AB leans against a wall as shown....Ch. 8.1 - The press shown is used to emboss a small seal at...Ch. 8.1 - The machine base shown has a mass of 75 kg and is...Ch. 8.1 - The 50-lb plate ABCD is attached at A and D to...Ch. 8.1 - In Prob. 8.29, determine the range of values of...Ch. 8.1 - A window sash weighing 10 lb is normally supported...Ch. 8.1 - A 500-N concrete block is to be lifted by the pair...Ch. 8.1 - Prob. 8.33PCh. 8.1 - Prob. 8.34PCh. 8.1 - Prob. 8.35PCh. 8.1 - Prob. 8.36PCh. 8.1 - A 1.2-m plank with a mass of 3 kg rests on two...Ch. 8.1 - Two identical uniform boards, each with a weight...Ch. 8.1 - Prob. 8.39PCh. 8.1 - Prob. 8.40PCh. 8.1 - A 10-ft beam, weighing 1200 lb, is to be moved to...Ch. 8.1 - (a) Show that the beam of Prob. 8.41 cannot be...Ch. 8.1 - Two 8-kg blocks A and B resting on shelves are...Ch. 8.1 - A slender steel rod with a length of 225 mm is...Ch. 8.1 - In Prob. 8.44, determine the smallest value of ...Ch. 8.1 - Two slender rods of negligible weight are...Ch. 8.1 - Two slender rods of negligible weight are...Ch. 8.2 - The machine part ABC is supported by a...Ch. 8.2 - Solve Prob. 8.48 assuming that the wedge is moved...Ch. 8.2 - Prob. 8.50PCh. 8.2 - Prob. 8.51PCh. 8.2 - The elevation of the end of the steel beam...Ch. 8.2 - Prob. 8.53PCh. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - Prob. 8.57PCh. 8.2 - A 15 wedge is forced into a saw cut to prevent...Ch. 8.2 - A 12 wedge is used to spread a split ring. The...Ch. 8.2 - The spring of the door latch has a constant of 1.8...Ch. 8.2 - Prob. 8.61PCh. 8.2 - Prob. 8.62PCh. 8.2 - Prob. 8.63PCh. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - Prob. 8.66PCh. 8.2 - *8.67 Solve Prob. 8.66 assuming that the rollers...Ch. 8.2 - Derive the following formulas relating the load W...Ch. 8.2 - Prob. 8.69PCh. 8.2 - Prob. 8.70PCh. 8.2 - High-strength bolts are used in the construction...Ch. 8.2 - The position of the automobile jack shown is...Ch. 8.2 - For the jack of Prob. 8.72, determine the...Ch. 8.2 - Prob. 8.74PCh. 8.2 - Prob. 8.75PCh. 8.2 - Prob. 8.76PCh. 8.3 - A lever of negligible weight is loosely fitted...Ch. 8.3 - Prob. 8.78PCh. 8.3 - 8.79 and 8.80 The double pulley shown is attached...Ch. 8.3 - Prob. 8.80PCh. 8.3 - 8.81 and 8.82 The double pulley shown is attached...Ch. 8.3 - 8.81 and 8.82 The double pulley shown is attached...Ch. 8.3 - The block and tackle shown are used to raise a...Ch. 8.3 - The block and tackle shown are used to lower a...Ch. 8.3 - A scooter is to be designed to roll down a 2...Ch. 8.3 - The link arrangement shown is frequently used in...Ch. 8.3 - 8.87 and 8.88 A lever AB of negligible weight is...Ch. 8.3 - 8.87 and 8.88 A lever AB of negligible weight is...Ch. 8.3 - 8.89 and 8.90 A lever AB of negligible weight is...Ch. 8.3 - 8.89 and 8.90 A lever AB of negligible weight is...Ch. 8.3 - A loaded railroad car has a mass of 30 Mg and is...Ch. 8.3 - 8.92 Knowing that a couple of magnitude 30 N-m is...Ch. 8.3 - A 50-lb electric floor polisher is operated on a...Ch. 8.3 - The frictional resistance of a thrust bearing...Ch. 8.3 - Assuming that bearings wear out as indicated in...Ch. 8.3 - Assuming that the pressure between the surfaces of...Ch. 8.3 - Solve Prob. 8.93 assuming that the normal force...Ch. 8.3 - Determine the horizontal force required to move a...Ch. 8.3 - Knowing that a 6-in.-diameter disk rolls at a...Ch. 8.3 - A 900-kg machine base is rolled along a concrete...Ch. 8.3 - Solve Prob. 8.85 including the effect of a...Ch. 8.3 - Solve Prob. 8.91 including the effect of a...Ch. 8.4 - A rope having a weight per unit length of 0.4...Ch. 8.4 - 8.104 A hawser is wrapped two full turns around a...Ch. 8.4 - Two cylinders are connected by a rope that passes...Ch. 8.4 - Two cylinders are connected by a rope that passes...Ch. 8.4 - Prob. 8.107PCh. 8.4 - 8.108 Knowing that the coefficient of static...Ch. 8.4 - A band belt is used to control the speed of a...Ch. 8.4 - The setup shown is used to measure the output of a...Ch. 8.4 - The setup shown is used to measure the output of a...Ch. 8.4 - A flat belt is used to transmit a couple from drum...Ch. 8.4 - A flat belt is used to transmit a couple from...Ch. 8.4 - Prob. 8.114PCh. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - Prob. 8.116PCh. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - Bucket A and block C are connected by a cable that...Ch. 8.4 - Solve Prob. 8.118 assuming that drum B is frozen...Ch. 8.4 - Prob. 8.120PCh. 8.4 - 8.121 and 8.123 A cable is placed around three...Ch. 8.4 - Prob. 8.122PCh. 8.4 - 8.121 and 8.123 A cable is placed around three...Ch. 8.4 - A recording tape passes over the 20-mm-radius...Ch. 8.4 - Solve Prob. 8.124 assuming that the idler drum C...Ch. 8.4 - Prob. 8.126PCh. 8.4 - Prob. 8.127PCh. 8.4 - Prob. 8.128PCh. 8.4 - Prob. 8.129PCh. 8.4 - Prove that Eqs. (8.13) and (8.14) are valid for...Ch. 8.4 - Prob. 8.131PCh. 8.4 - Solve Prob. 8.112 assuming that the flat belt and...Ch. 8.4 - Solve Prob. 8.113 assuming that the flat belt and...Ch. 8 - 8.134 and 8.135 The coefficients of friction are S...Ch. 8 - 8.134 and 8.135 The coefficients of friction are S...Ch. 8 - A 120-lb cabinet is mounted on casters that can be...Ch. 8 - Prob. 8.137RPCh. 8 - The hydraulic cylinder shown exerts a force of 3...Ch. 8 - Prob. 8.139RPCh. 8 - Bar AB is attached to collars that can slide on...Ch. 8 - Two 10 wedges of negligible weight are used to...Ch. 8 - A 10 wedge is used to split a section of a log....Ch. 8 - In the gear-pulling assembly shown, the...Ch. 8 - A lever of negligible weight is loosely fitted...Ch. 8 - In the pivoted motor mount shown, the weight W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the bending moment at the point D on the beam below. Take F=79 and remember that this quantity is to be used to calculate both forces and lengths. 15F 30F A сarrow_forwardShow work on how to obtain P2 and T2. If using any table, please refer to it. If applying interpolation method, please show the work.arrow_forwardcast-iron roller FIGURE P11-3 Shaft Design for Problems 11-17 Chapter 11 BEARINGS AND LUBRICATION 677 gear key P assume bearings act as simple supports 11-18 Problem 7-18 determined the half-width of the contact patch for a 1.575-in-dia steel cylinder, 9.843 in long, rolled against a flat aluminum plate with 900 lb of force to be 0.0064 in. If the cylinder rolls at 800 rpm, determine its lubrication condition with ISO VG 1000 oil at 200°F. R₁ = 64 μin (cylinder); R₁ = 32 μin (plate). 11-19 The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-19, design suitable bearings to support the load for at least 5E8 cycles at 1200 rpm. State all assumptions. (a) (b) Using hydrodynamically lubricated bronze sleeve bearings with ON = 40, 1/ d=0.80, and a clearance ratio of 0.002 5. Using deep-groove ball bearings for a 10% failure rate. *11-20 Problem 7-20 determined the…arrow_forwardCalculate the shear force at the point D on the beam below. Take F=19 and remember that this quantity is to be used to calculate both forces and lengths. 15F A сarrow_forward"II-1 The shaft shown in Figure P11-I was designed in Problem 10-1. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-1, design suitable bearings to support the load for at least 7E7 cycles at 1500 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with Ox = 20, 1/d=1.25, and a clearance ratio of 0.001 5. assume bearings act as simple supports FIGURE P11-1 Shaft Design for Problem 11-1 11-2 The shaft shown in Figure P11-2 was designed in Problem 10-2. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-2, design suitable bearings to support the load for at least 3E8 cycles at 2.500 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with ON=30, 1/d=1.0, and a clearance ratio of 0.002. FIGURE P11-2 Shaft Design for Problem 11-2 Table P11-1 Data for Problems assume bearings act as simple…arrow_forwardFor the frame below, calculate the shear force at point Q. Take P=13 and note that this value is used for both the loads and the lengths of the members of the frame. 1 A Q ✗ 19 KBP 2.5P- B R C 45 degrees ✗ 1 .2P- 4PhN -P→arrow_forwardCalculate the Bending Moment at point D in the frame below. Leave your answer in Nm (newton-metres) J J A 2m 2m <2m х D 不 1m X E 5m 325 Nm 4x 400N/marrow_forwardIn the beam below, calculate the shear force at point A. Take L=78 and remember that both the loads and the dimensions are expressed in terms of L. 143 1 DX A - Li 4 LhN 14LRN/m Х B 22 3 L.arrow_forwardCalculate the Shear Force at Point F on the beam below. Keep your answer in Newtons and make shear force positive to the right. A х 2m <2m E D 5m 1m Хт 325N1m 400N/m 8arrow_forwardThe normal force at C on the beam below is equal to: A ShN C X 15h N 8 ○ OkN 2.5kN 10kN ○ 12.5kN 1m Im 1m 1m;arrow_forwardCalculate the y coordinate of the of the centroid of the shape below. Take A= 18.5 8 6A 4A X 6Aarrow_forwardIn MATLAB write out a program to integrate the equations of motion of a rigid body. The inertia matrix is given by I = [125 0 0; 0 100 0; 0 0 75] which is a diagonal, where diag operator provides a matrix with given elements placed on its diagonal. Consider three cases where the body rotates 1 rad/sec about each principal axis. Integrate the resulting motion and study the angular rates and the resulting attitude (use any attitude coordinates). For each principal axis case, assume first that a pure spin about the principal axis is performed, and then repeat the simulation where a small 0.1 rad/sec motion is present about another principal axis. Discuss the stability of each motion. The code should produce a total of 6 simulations results when it is ran.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License