FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
.The thermal efficiency of a heat engine is 30%, the heat rejected from the engine is 30kJ, evaluate the heat input to the engine.
A water cooler for drinking water should cool 25 L/h water from 18 C to 10 C while the water reservoirs also gains 60 W from heat transfer. Assume that a small refrigeration unit with a COP of 2.5 does the cooling. Find the power input to the unit.
A heat engine of 30% efficiency drives a heat pump of COP 5. The heat is transferred both from engine and the heat pump to circulating water for heating the building in winter. Find the ratio of heat transfer to the circulating water from heat pump to the heat transfer to the circulating water from the heat
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Suppose 400 kW of power potential is wasted during the process as a result of irreversibility. Let say the heat pump received heat at a rate of 1000 kJ/s from a heat source. The reversible power of the present process is found to be 800 kW. Find unavailable heat, which is rejected to the sink.arrow_forwardA bio-reactor is kept at 42°C by a heat pump driven by a motor of 2 kW. The reactor loses energy at a rate of 0.5 kW per degree difference to the colder ambient. The heat pump has a COP that is 50% that of a Carnot heat pump. What is the minimum ambient temperature for which the heat pump is sufficient?arrow_forwardAn air conditioner using refrigerant 134a as work fluid It is used to keep the temperature of a room at 23 ° C by giving heat to the environment. The house from the walls and heat gain from windows is 250 kJ / min ; 900 W of heat from computer, TV and lamps to the room spreads. The refrigerant is 100 L / min in the form of saturated vapor at 400 kPa pressure to the compressor entering with flow and it left from the compressor 1200 kPa pressure and 70 ° C. a) real COP value b) max COP value c) Calculate the min volumetric flow rate for the refrigerant can have for the same compressor inlet and outlet conditionsarrow_forward
- Answer question 1 and 3arrow_forwardFind out the COP of a Carnot heat pump operating between temperatures 6o C and 37o C.arrow_forwardA heat pump shown is driven by 3.0 MW motor and receives heat from a source at 60C and deliver energy to a boiler that operates at constant pressure and saturation temperature of 140 C. The water enters the boiler as saturated liquid and leaves as saturated vapor at the same temperature. The heat pump operates with a COP (coefficient of performance) that is 60% of a Carnot heat pump COP. Find : 1- the maximum mass flow rate of water the system can deliver 2- the heat received from the source Q, boiler mter TH VHP - w T 60°Carrow_forward
- A heat pump shown is driven by 2.5 MW motor and receives heat from a source at 80 C and deliver energy to a boiler that operates at constant pressure and saturation temperature of 130 C. The water enters the boiler as saturated liquid and leaves as saturated vapor at the same temperature. The heat pump operates with a COP (coefficient of performance) that is 70% of a Carnot heat pump COP. Find: 1- the maximum mass flow rate of water the system can deliver 2- the heat received from the cold source Q, boiler mwater eb TH V HP 2.5 MW TL=80°Carrow_forwardA fraction of some power to a motor (1), 2 kW, is turned into heat transfer at 500 K (2) and then it dissipates in the ambient at 300 K (3). Give the rates of exergy along the process 1-2-3.arrow_forwardA large heat pump should upgrade 4 MW of heat at 65 C to be delivered as heat at 145 C. What is the minimum amount of work input that will drive this?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license