FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A pressure cooker 6 litres in volume contains 5 kg of water, where the liquid is in equilibrium
with the vapour above it, at 30°C. The cooker with its lid closed and weight on, is heated until
the vapour produced results in an increase in pressure, and the weight just lifts up at 2 bar.
i.
If the flame heating the cooker is at 400°C, calculate the entropy generation due to
the external irreversibility.
Calculate the heat transferred in the process.
ii.
Assume that the heating of water is reversible; neglect heating of the cooker body; assume
heat transfer to water takes place at its average temperature for the above process. Use
property data given below.
Consider a heat transfer process of the steady form that occurs along a plain wall.
While the inner room temperature was kept at 25 °C, the outdoor environment temperature
was measured to be 2 °C. If the heat transfer at this plain wall in an hour is 3,528 kJ,
determine the.total exergy destruction per unit time (the rate), which occurs during this heat
transfer process, a) use the total entropy generation to find the rate of the total exergy
destruction in the room (i.e.., use the entropy balance), b) use the exergy balance to find the
rate of the total exergy destruction in the room
heat engine used a steam as working fluid has 3 kg/s and initial the
steam undergoes to expansion process is 8 bar, dryness fraction ( 65) percent , and the expansion follows the law (PV¹.¹-C), down to a pressure of 0.3 bar. Calculate the change of entropy of steam during the process.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardProblem 4: In the pump of a steam power plant, saturated liquid at 75 kPa pressure is compressed to 3 MPa pressure. Since the adiabatic efficiency of the pump is 85%, find the work consumed by the pump.arrow_forward2000 kg cast iron hoisin at 350 degree Celsius is quenched in 4000 kg of water at 15 degree Celsius. Find the amount of heat transferred to the water bath, entropy change for water and cast iron, use the entropy generation to prove that the entire system does not violate the second law of thermodynamics. Water specific heat of 4.18kj/kg.k, cast iron specific heat of 0.42kj/kg.karrow_forward
- A fraction of some power to a motor (1), 2 kW, is turned into heat transfer at 500 K (2) and then it dissipates in the ambient at 300 K (3). Give the rates of exergy along the process 1-2-3.arrow_forwardGiven 0.603MW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). a) Calculate the total rate of entropy production b) Calculate the total rate of exergy destruction (W). The dead state temperature is 293.2 K and pressure is 1 bar. c) Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.arrow_forwardA- Air at 300 K and 1 bar is compressed adiabatically to 8 bar. It is then cooled at constant volume and further expanded isothermally so as to reach the initial condition. Find the net work and heat for this cycle.arrow_forward
- 78 kg of water vapor is found as saturated vapor at 650 kPa pressure in a cube-shaped container with a fixed volume. The cube lost heat and its pressure dropped to 325 kPa. Since the environmental conditions are 100 kPa 25 ºC, find the exergy change of the steam in the first and the last state, the exergy change in the steam, the exergy destruction and the second-law efficiency for this process change.arrow_forwardI was getting 35.4 but correct answer is 0.228. please help me to solve itarrow_forward40°C 4. A mixing chamber receives 5 kg/min of ammonia as saturated liquid at -20°C from one line (1) and ammonia at 40°C, 250 kPa from another line (2). The chamber also receives 325 kJ/min of energy as heat transferred from a 40°C reservoir as shown in figure. At the outlet, ammonia leaves as saturated vapor at -20°C. Find the mass flow rate in second line and calculate the total entropy generation in the process. Is this process possible?arrow_forward
- A feedwater heater has 5 kg/s water at 5 MPa and 40°C flowing through it, being heated from two sources, as shown in Fig. 8.6. One source adds 900 kW from a 100°C reservoir, and the other source transfers heat from a 200°Creservoir such that thewater exit condition is 5 MPa, 180°C. Find the reversible work and the irreversibility. KINDLY HELP WITH THIS QUESTION ,ON HOW ONE GET VALUES FROM STEAM TABLE FOR INLET AND EXIT STATE? Please let me know which steam table did you use and also indicate table number and tible of the table used ,lastly show all calculations.arrow_forwardAccording to the Carnot cycle, the thermal efficiency of a working heat machine is 28%, and water vapor is used as the working fluid. Heat transfer to the working fluid occurs at 350°C, and at this time the fluid passes from a saturated liquid state to a saturated vapor state. Since 5 kg of fluid circulates per hour in the cycle, find the power of this heat machine using the entropy of evaporation.arrow_forwardGive me right solution.. Urgent pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License