FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
3. An adiabatic compressor takes argon from 100 kPa, 300 K to 2000 kPa. The compressor
efficiency is 80%.
(a) Find the outlet temperature (K) and the work (kJ/kg)
(b) Find the entropy generation (kJ/kg-K)
A steam turbine has an inlet of 2 kg/s water at 1000 kPa, 350 °C and velocity of 15 m/s. The exit is at 100 kPa, 150 °C and very low velocity (assume zero). Find the specific work (kJ/kg) and the power (kW) produced.
4. Air at a temperature of 500 0C is compressed at a constant pressure of 1.2MPa from a volume
of 2 m3 to a volume of 0.4m3 . If the initial internal energy decrease is 4820 KJ, find
a. The work done during the reversible compression
b. The heat transferred
c. The change of enthalpy
d. The average specific heat at constant pressure
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.arrow_forwardA steam turbine receives steam with a specific enthalpy of 31 17 kJ/kg at a rate of 5 kg/s. At the turbine outlet, the specific enthalpy of the steam is 2851 kJIkg. Find the turbine power in kW.arrow_forward1.A rotary compressor receives 6m3/min of gas (R=410 J/kg-K, k=1.67) at 105 kPaa, 26.85°C and delivers it at 630 kPaa; changes of potential and kinetic energies are negligible. Find the work in kJ/min if the process is a) isentropic, b) isothermal c)polytropic with n=1.4arrow_forward
- Q4 a- The pressure inlet for air compressor is 14 psi ,60 F and the output of 140 psi at 1080 R .This output passes through a cooler of constant pressure .if the exit air out of cooler is 540R find the specific work and specific heat of this compressor .use the table below in case.arrow_forward· A closed gaseous system undergoes a reversible process with constant pressure of 200kpa. 2500 kJ of heat is rejected, and the volume changes from 5m3 to 2m3. Find the change in internal energyarrow_forwardAn amount of 4000 BTU of heat is transferred from a reservoir at 800 deg. F to a reservoir at 200 deg. F. Find the entropy change of the system.arrow_forward
- 4arrow_forwardSteam to a turbine at a mass flow rate of 1.4 kg/s, 700 kPa pressure and 400 °C enters the temperature. Steam at 100 kPa pressure and 1.4 m3/kg specific volume exits the turbine. Heat transfer from turbine to environment 50 kW, with turbine Since the boundary temperature between the environment is 70 °C, a) Find the power produced by the turbine, entropy produced in the turbine and isentropic efficiency of the turbine. Note: The changes in kinetic and potential energies will be neglected and T (K) = 273 + °C will be taken.arrow_forward2. A closed constant volume system receives 10.5 kJ of paddle work. The system contains oxygen at 344 kPa, 278 K and occupies 0.06 cu. m. Find the heat (gain or loss) if the final temperature is 400 K.arrow_forward
- A refrigeration system has a heat added of 440 kw. If COP is 7,find the mass of cooling water in the condenser for a temperature increase of 14°C.arrow_forwardA mixing chamber with heat transfer receives 2 kg / s of R - 134a at 1 MPa, 50 ° C in one line and 1 kg / s of R - 134a at 15 ° C, quality 40% in a line with a valve. The outgoing Now is at 1 MPa, 70 ° C Find the rate of heat transfer to the mixing chamberarrow_forwardThe turbine section in a jet engine receives gas (assume air) at 1200 K, 800 kPa with an ambient atmosphere at 80 kPa. The turbine is followed by a nozzle open to the atmosphere and all the turbine work drives a compressor receiving air at 85 kPa, 270 K with the same flow rate. Find the turbine exit pressure P₂ so the nozzle has an exit velocity of 800 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license