FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Water Vapor pressure 8 MPa and 350 in an adiabatic turbineIt enters at a temperature of oC and at a pressure of 750 kPacomes out. Reversible The amount of work done by the unit mass of steam for the processcalculate.
1. Find enthalpy if 5kg of certain gas go through a reversible non flow that has constant
pressure process from initial volume 2.129m³and pressure of 700 kPa to a state where T2
550°C. A certain gas has R= 350J/kg-K and Cv = 0.94 kJ/kg-K
a. 731.9675kJ
b. 813.8610kJ
c. 878.3610kJ
d. 891.2610kJ
There are required 2000 kW of compressor power to handle air adiabaticallyfrom 1 atmosphere, 27 oC, to 305 kPaa. The initial air velocity is 20 m/s and the finalvelocity is 85 m/s.
a) If the compression is isentropic, find the compressor capacity, inm3/s.
b) If the compression process is irreversible adiabatic to a temperature of 160 oC,with the capacity found in
c), determine the compressor power input, in Hp.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steam with a quality of 49%, enters an adiabatic nozzle at 3.5 MPa and leaves at 0.4 MPa and 140 oC with a flow of 7 m/s. Find the entrance velocity, in m/s.arrow_forwardan air flow is brought from 20 degree celsius, 100 kPa to 1000 kPa, 330 degree celsius by an adiabatic compressor driven by 50 kW motor. what are the mass flow rate and the exit volume flow rate of air?arrow_forwardThere are received 25 kg/s of steam at 2.15 MPa, 480°C by a Rankine engine; exhaust occurs at 0.10MPa. find the work of turbine in kJ/s. Insert TS diagram, Use Steam Table SI unit onlyarrow_forward
- A 5 m3rigid tank has propane at 500 kPa, 700 K and connected by a valve to another tank of 0.7 m3with propane at 350 kPa, 600 K. The valve is opened and the two tanks come to a uniform state at 350 K. What is the final pressure?For propane R = 0.1886 kJ/kgKarrow_forwardPlease be very detailedarrow_forwardGive me right solution.. Urgent pleasearrow_forward
- Question 3: Superheated steam enters a turbine at 7 MPa, 550°C, and exits at 150kPa a. Draw the system. b. If the process is reversible adiabatic (isentropic), find the final temperature (T2), the final enthalpy (h2,) of the steam, and do the energy balance to calculate the turbine work (Wts). c. Using entropy balance, show that Sgen for the above process is 0. d. If the isentropic efficiency is 85%, find the actual final temperature (T23) and calculate Sgen? e. Plot process in (b) and (d) on a Ts diagram with proper labelling.arrow_forwardK) that undergo an K-K 13. There are 1.5 Kgof a gas where K = 1.3 and R = 0.38 tsochoric process from pi = 0.552 MPa, t, = 58.5°C top2 = 1.66 MPa. During the process, there added 100 KJ of heat. Compute the heat transferred, change of internal energy and the change of entropy. %3Darrow_forwardA condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.arrow_forward
- Steam to a turbine at a mass flow rate of 1.4 kg/s, 700 kPa pressure and 400 °C enters the temperature. Steam at 100 kPa pressure and 1.4 m3/kg specific volume exits the turbine. Heat transfer from turbine to environment 50 kW, with turbine Since the boundary temperature between the environment is 70 °C, a) Find the power produced by the turbine, entropy produced in the turbine and isentropic efficiency of the turbine. Note: The changes in kinetic and potential energies will be neglected and T (K) = 273 + °C will be taken.arrow_forwardSketch and label the nozzle. Sketch and label the process on a P-v diagram, also mention all numbers on the process of P-V diagram please. 7.15 The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.arrow_forwardQ9: Steam at 110 bar has a specific volume of 0.0196 m3/kg, find the temperature, the enthalpy and the internal energy.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License