Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 112P
A 70.0 kg man jumping from a window lands in an elevated fire rescue net 11.0 m below the window. He momentarily stops when he has stretched the net by 1.50 m. Assuming that mechanical energy is conserved during this process and that the net functions like an ideal spring, find the elastic potential energy of the net when it is stretched by 1.50 m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 8 - In Fig. 8-18, a horizontally moving block can take...Ch. 8 - Figure 8-19 gives the potential energy function of...Ch. 8 - Figure 8-20 shows one direct path and four...Ch. 8 - In Fig. 8-21, a small, initially stationary block...Ch. 8 - In Fig. 8-22, a block slides from A to C along a...Ch. 8 - In Fig. 8-23a, you pull upward on a rope that is...Ch. 8 - The arrangement shown in Fig. 8-24 is similar to...Ch. 8 - In Fig. 8-25, a block slides along a track that...Ch. 8 - Figure 8-26 shows three situations involving a...Ch. 8 - Figure 8-27 shows three plums that are launched...
Ch. 8 - When a particle moves from f to i and from j to i...Ch. 8 - SSM What is the spring constant of a spring that...Ch. 8 - In Fig. 8-29, a single frictionless roller-coaster...Ch. 8 - You drop a 2.00 kg book to a friend who stands on...Ch. 8 - Figure 8-31 shows a ball with mass m = 0.341 kg...Ch. 8 - SSM In Fig. 8-32, a 2.00 g ice flake is released...Ch. 8 - In Fig. 8-33, a small block of mass m = 0.032 kg...Ch. 8 - Figure 8-34 shows a thin rod, of length L = 2.00 m...Ch. 8 - A 1.50 kg snowball is fired from a cliff 12.5 m...Ch. 8 - GO In Problem 2, what is the speed of the car at a...Ch. 8 - a In Problem 3, what is the speed of the book when...Ch. 8 - SSM WWW a In Problem 5, what is the speed of the...Ch. 8 - a In Problem 8, using energy techniques rather...Ch. 8 - SSM A 5.0 g marble is fired vertically upward...Ch. 8 - a In Problem 4, what initial speed must be given...Ch. 8 - SSM In Fig. 8-35, a runaway truck with failed...Ch. 8 - A 700 g block is released from rest at height h0...Ch. 8 - In Problem 6, what are the magnitudes of a the...Ch. 8 - a In Problem 7, what is the speed of the ball at...Ch. 8 - GO Figure 8-36 shows an 8.00 kg stone at rest on a...Ch. 8 - GO A pendulum consists of a 2.0 kg stone swinging...Ch. 8 - Figure 8-34 shows a pendulum of length L = 1.25 m....Ch. 8 - A 60 kg skier starts from rest at height H = 20 m...Ch. 8 - ILW The string in Fig. 8-38 is L = 120 cm long,...Ch. 8 - A block of mass m = 2.0 kg is dropped from height...Ch. 8 - At t = 0 a 1.0 kg ball is thrown from a tall tower...Ch. 8 - A conservative force F=(6.0x12)i N, where x is in...Ch. 8 - Tarzan, who weighs 688 N, swings from a cliff at...Ch. 8 - Figure 8-41a applies to the spring in a cork gun...Ch. 8 - SSM WWW In Fig. 8-42, a block of mass m = 12 kg is...Ch. 8 - GO A 2.0 kg breadbox on a frictionless incline of...Ch. 8 - ILW A block with mass m = 2.00 kg is placed...Ch. 8 - In Fig. 8-45, a chain is held on a frictionless...Ch. 8 - GO In Fig. 8-46, a spring with k = 170 N/m is at...Ch. 8 - GO A boy is initially seated on the top of a...Ch. 8 - GO In Fig. 8-42, a block of mass m = 3.20 kg...Ch. 8 - GO Two children are playing a game in which they...Ch. 8 - A uniform cord of length 25 cm and mass 15 g is...Ch. 8 - Figure 8-49 shows a plot of potential energy U...Ch. 8 - GO Figure 8-50 shows a plot of potential energy U...Ch. 8 - The potential energy of a diatomic molecule a...Ch. 8 - A single conservative force Fx acts on a 1.0 kg...Ch. 8 - A worker pushed a 27 kg block 9.2 m along a level...Ch. 8 - A collie drags its bed box across a floor by...Ch. 8 - A horizontal force of magnitude 35.0 N pushes a...Ch. 8 - SSM A rope is used to pull a 3.57 kg block at...Ch. 8 - An outfielder throws a baseball with an initial...Ch. 8 - A 75 g Frisbee is thrown from a point 1.1 m above...Ch. 8 - In Fig. 8-51, a block slides down an incline. As...Ch. 8 - SSM ILW A 25 kg bear slides, from rest, 12 m down...Ch. 8 - A 60 kg skier leaves the end of a ski-jump ramp...Ch. 8 - During a rockslide, a 520 kg rock slides from rest...Ch. 8 - A large fake cookie sliding on a horizontal...Ch. 8 - GO In Fig. 8-52, a 3.5 kg block is accelerated...Ch. 8 - A child whose weight is 267 N slides down a 6.1 m...Ch. 8 - ILW In Fig. 8-53, a block of mass m = 2.5 kg...Ch. 8 - You push a 2.0 kg block against a horizontal...Ch. 8 - GO In Fig. 8-54, a block slides along a track from...Ch. 8 - A cookie jar is moving up a 40 incline. At a point...Ch. 8 - A stone with a weight of 5.29 N is launched...Ch. 8 - Prob. 60PCh. 8 - When a click beetle is upside down on its back, it...Ch. 8 - GO In Fig. 8-55, a block slides along a path that...Ch. 8 - The cable of the 1800 kg elevator cab in Fig. 8-56...Ch. 8 - GO In Fig. 8-57, a block is released from rest at...Ch. 8 - GO A particle can slide along a track with...Ch. 8 - A 3.2 kg sloth hangs 3.0 m above the ground. a...Ch. 8 - SSM A spring k = 200 N/m is fixed at the top of a...Ch. 8 - From the edge of a cliff, a 0.55 kg projectile is...Ch. 8 - SSM In Fig. 8-60, the pulley has negligible mass,...Ch. 8 - GO In Fig. 8-38, the string is L = 120 cm long,...Ch. 8 - SSM In Fig. 8-51, a block is sent sliding down a...Ch. 8 - Two snowy peaks are at heights H = 850 m and h =...Ch. 8 - SSM The temperature of a plastic cube is monitored...Ch. 8 - A skier weighing 600 N goes over a frictionless...Ch. 8 - SSM To form a pendulum, a 0.092 kg ball is...Ch. 8 - We move a particle along an x axis, first outward...Ch. 8 - SSM A conservative force Fx acts on a 2.00 kg...Ch. 8 - At a certain factory, 300 kg crates are dropped...Ch. 8 - SSM A 1500 kg car begins sliding down a 5.0...Ch. 8 - In Fig. 8-65, a 1400 kg block of granite is pulled...Ch. 8 - A particle can move along only an x axis, where...Ch. 8 - For the arrangement of forces in Problem 81, a...Ch. 8 - SSM A 15 kg block is accelerated at 2.0 m/s2 along...Ch. 8 - A certain spring is found not to conform to Hookes...Ch. 8 - SSM Each second, 1200 m3 of water passes over a...Ch. 8 - GO In Fig. 8-67, a small block is sent through...Ch. 8 - SSM A massless rigid rod of length L has a ball of...Ch. 8 - A 1.50 kg water balloon is shot straight up with...Ch. 8 - A 2.50 kg beverage can is thrown directly downward...Ch. 8 - A constant horizontal force moves a 50 kg trunk...Ch. 8 - GO Two blocks, of masses M = 2.0 kg and 2M, are...Ch. 8 - A volcanic ash flow is moving across horizontal...Ch. 8 - A playground slide is in the form of an arc of a...Ch. 8 - The luxury liner Queen Elizabeth 2 has a...Ch. 8 - A factory worker accidentally releases a 180 kg...Ch. 8 - If a 70 kg baseball player steals home by sliding...Ch. 8 - A 0.50 kg banana is thrown directly upward with an...Ch. 8 - A metal tool is sharpened by being held against...Ch. 8 - A swimmer moves through the water at an average...Ch. 8 - An automobile with passengers has weight 16 400 N...Ch. 8 - A 0.63 kg ball thrown directly upward with an...Ch. 8 - The summit of Mount Everest is 8850 m above sea...Ch. 8 - A sprinter who weighs 670 N runs the first 7.0 m...Ch. 8 - A 20 kg object is acted on by a conservative force...Ch. 8 - A machine pulls a 40 kg trunk 2.0 m up a 40 ramp...Ch. 8 - Prob. 106PCh. 8 - The only force acting on a particle is...Ch. 8 - In 1981, Daniel Goodwin climbed 443 m up the...Ch. 8 - A 60.0 kg circus performer slides 4.00 m down a...Ch. 8 - A 5.0 kg block is projected at 5.0 m/s up a plane...Ch. 8 - A 9.40 kg projectile is fired vertically upward....Ch. 8 - A 70.0 kg man jumping from a window lands in an...Ch. 8 - A 30 g bullet moving a horizontal velocity of 500...Ch. 8 - A 1500 kg car starts from rest on a horizontal...Ch. 8 - A 1.50 kg snowball is shot upward at an angle of...Ch. 8 - A 68 kg sky diver falls at a constant terminal...Ch. 8 - A 20 kg block on a horizontal surface is attached...Ch. 8 - Resistance to the motion of an automobile consists...Ch. 8 - SSM A 50 g ball is thrown from a window with an...Ch. 8 - A spring with a spring constant of 3200 N/m is...Ch. 8 - A locomotive with a power capability of 1.5 MW can...Ch. 8 - SSM A 0.42 kg shuffleboard disk is initially at...Ch. 8 - A river descends 15 m through rapids. The speed of...Ch. 8 - The magnitude of the gravitational force between a...Ch. 8 - Approximately 5.5 106 kg of water falls 50 m over...Ch. 8 - To make a pendulum, a 300 g ball is attached to...Ch. 8 - In a circus act, a 60 kg clown is shot from a...Ch. 8 - A 70 kg firefighter slides, from rest, 4.3 m down...Ch. 8 - The surface of the continental United States has...Ch. 8 - A spring with spring constant k = 200 N/m is...Ch. 8 - Fasten one end of a vertical spring to a ceiling,...Ch. 8 - The maximum force you can exert on an object with...Ch. 8 - Conservative force Fx acts on a particle that...Ch. 8 - Figure 8-73a shows a molecule consisting of two...Ch. 8 - Repeat Problem 83, but now with the block...Ch. 8 - A spring with spring constant k = 620 N/m is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write a molecular equation for the precipitation reaction that occurs (if any) when each pair of solutions is m...
Introductory Chemistry (6th Edition)
Starting with 10 bacterial cells per milliliter in a sufficient amount of complete culture medium with a 1-hour...
Microbiology with Diseases by Body System (5th Edition)
The bond angles in a regular polygon with n sides are equal to 180360n a. What are the bond angles in a regular...
Organic Chemistry (8th Edition)
Gadoleic acid (C20H38O2), a fatty acid that can be isolated from cod-liver oil, can be cleaved by hydroxylation...
Organic Chemistry
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. The Big Bang is the name astronomers g...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.69arrow_forwardA 4.00-kg particle moves along the x axis. Its position O varies with time according to x = t + 2.0t3, where x is in meters and t is in seconds. Find (a) the kinetic energy of the particle at any time t (b) the acceleration of the particle and the force acting on it at time t, (c) the power being delivered to the particle at time t and (d) the work done on the particle in the interval t = 0 to t = 2.00 s.arrow_forwardAfter ripping the padding off a chair you are refurbishing, you notice that there are six springs beneath, which are intended to contribute equally in supporting your weight when you sit. You find a tag that indicates that the springs are identical and that each has a spring constant of 1.5 103 N/m. What would be the elastic potential energy stored in the six-spring system if you were to sit on the chair?arrow_forward
- A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardA particle moves in one dimension under the action of a conservative force. The potential energy of the system is given by the graph in Figure P8.55. Suppose the particle is given a total energy E, which is shown as a horizontal line on the graph. a. Sketch bar charts of the kinetic and potential energies at points x = 0, x = x1, and x = x2. b. At which location is the particle moving the fastest? c. What can be said about the speed of the particle at x = x3? FIGURE P8.55arrow_forwardThe Flybar high-tech pogo stick is advertised as being capable of launching jumpers up to 6 ft. The ad says that the minimum weight of a jumper is 120 lb and the maximum weight is 250 lb. It also says that the pogo stick uses a patented system of elastometric rubber springs that provides up to 1200 lbs of thrust, something common helical spring sticks simply cannot achieve (rubber has 10 times the energy storing capability of steel). a. Use Figure P8.32 to estimate the maximum compression of the pogo sticks spring. Include the uncertainty in your estimate. b. What is the effective spring constant of the elastometric rubber springs? Comment on the claim that rubber has 10 times the energy-storing capability of steel. c. Check the ads claim that the maximum height a jumper can achieve is 6 ft.arrow_forward
- A block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardA block of mass m = 0.250 kg is pressed against a spring resting on the bottom of a plane inclined an angle = 45.0 to the horizontal. The spring, which has a force constant of 955 N/m, is compressed a distance of 8.00 cm, and the block is released from rest. Consider the total energy of the springblockEarth system. a. What is the total distance the block moves from its initial position if the incline is frictionless? b. What is the total distance the block moves from its initial position if the coefficient of kinetic friction between the incline and the block is 0.330?arrow_forwardA block of mass 200 g is attached at the end of a massless spring of spring constant 50 N/m. The other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the block at the midpoint of its descent?arrow_forward
- Calculate the elastic potential energy of a spring with spring constant k = 225 N/m that is (a) compressed and (b) stretched by 1.00 102 m.arrow_forwardAs a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance, (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulums motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.arrow_forwardA block of mass 300 g is attached to a spring of spring constant 100 N/m. The other end of the spring is attached to a support while the block rests on a smooth horizontal table and can slide freely without any friction. The block is pushed horizontally till the spring compresses by 12 cm, and then the block is released from rest. (a) How much potential energy was stored in the block-spring support system when the block was just released? (b) Determine the speed of the block when it crosses the point when the spring is neither compressed nor stretched. (c) Determine the speed of the block when it has traveled a distance of 20 cm from where it was released.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY