Concept explainers
Psychologists interested in learning theory study learning curves. A learning curve is the graph of a function P(t), the performance of someone learning a skill as a function of the training time t. The derivative dP/dt represents the rate at which performance improves.
(a) When do you think P increases most rapidly? What happens to dP/dt as t increases? Explain.
(b) If M is the maximum level of performance of which the learner is capable, explain why the
is a reasonable model for learning.
(c) Make a rough sketch of a possible solution of this differential equation.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Essential Calculus: Early Transcendentals
- aThe average rate of change of a function f between x=a and x=b is the slope of the ___________ line between (a,f(a)) and (b,f(b)).arrow_forwardbThe average rate of change of the linear function f(x)=3x+5 between any two points is ________.arrow_forwardHigh School Graduates The following table shows the number, in millions, graduating from high school in the United States in the given year. Year Number graduating in millions 1985 2.83 1987 2.65 1989 2.47 1991 2.29 a. By calculating difference, show that these data can be modeled using a linear function. b. What is the slope for the linear function modeling high school graduations? Explain in practical terms the meaning of the slope. c. Find a formula for a linear function that models these data. d. Express, using functional notation, the number graduating from high school in 1994, and then use your formula from part c to calculate that value.arrow_forward
- Table 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forwardThe US. import of wine (in hectoliters) for several years is given in Table 5. Determine whether the trend appearslinear. Ifso, and assuming the trend continues, in what year will imports exceed 12,000 hectoliters?arrow_forwardWhen Date Are Unevenly speed. If data are evenly spaced, we need only calculate differences to see whether the data are linear. But if data are not evenly spaced, then we must calculate the average rate of change over each interval to see whether the data are linear. If the average rate of change is constant, it is the slope of the linear function. This fact is used in Exercises 23 and 24. In the following table, show that the average rate of change from 2 to 5 is not the same as the average rate of change from 5 to 6. This shows that the data are not linear, even though the differences in y are constant. x 1 2 5 6 y 3 6 9 12arrow_forward
- Does the following table represent a linear function ? If so, find the linear equation that models the data.arrow_forwardLet f be a function with constant rate of change. Then a f is a ________ function and f is of the form fx = ______x ________. b The graph of f is a __________.arrow_forwardTuition at American Public Universities This is a continuation of Exercise 6. The following table shows the average yearly in-state tuition and required fees, in dollars, charged by four-year American public universities in the school year ending in the given year. Date Average tuition 2012 8318 2013 8595 2014 8872 2015 9149 2016 9426 a. Show that these data can be modeled by a linear function, and find its formula. b. What is the slope for the linear function modeling tuition and required fees for public universities? c. What is the slope of the linear function modeling tuition and required fees for private universities? Note: See Exercise 6. d. Explain what the information in parts b and c tells you about the rate of increase in tuition in public versus private institutions. e. Which type of institution shows the larger percentage increase from 2015 to 2016? 6. Tuition at American Private Universities The following table shows the average yearly tuition and required fees, in dollars, charged by four-year American private nonprofit universities in the school year ending in the given year. Date Average tuition 2012 27, 870 2013 29, 004 2014 30, 138 2015 31, 272 2016 32, 406 a. Show that these data can be modeled by a linear function, and find its formula. b. Plot the data points and add the graph of the linear formula you found in part a. c. What prediction does this formula give for average tuition and fees at four-year American private nonprofit universities for the academic year ending in 2021?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning