Concept explainers
The figure shows the potential energy associated with an electron in a microelectronic device. From among the labeled points, find (1) the point where the force on the electron is greatest, (2) the right most position possible if the electron has total energy E1, (3) the leftmost position possible if the electron has total energy E2 and starts out to the right of D, (4) a point where the force on the electron is zero, and (5) a point where the force on the electron points to the left. In some cases there may be more than one answer.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Essential University Physics
Additional Science Textbook Solutions
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Biology (11th Edition)
Organic Chemistry (8th Edition)
Anatomy & Physiology (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
- A block of mass 200 g is attached at the end of a massless spring of spring constant 50 N/m. The other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the block at the midpoint of its descent?arrow_forwardA system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardA particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forward
- A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardWhat average power is generated by a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forwardConsider a particle on which a force acts that depends on the position of the particle. This force is given by . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-axis.arrow_forward
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardTwo persons were practicing social distancing to alleviate the spread of COVID-19. Social distancing requires a minimum of 3 feet distance from person to person. However, due to their eagerness to share some rumors, the two persons decided to approach each other and now within the intimate distance (12 inches). If person A weighs 60 kg. and person B weighs 68 kg., determine the work done for this act. Take G = 6.67408 × 10-11 m3 kg-1s-2arrow_forwardProtons and neutrons (together called nucleons) are held together in the nucleus of an atom by a force called the strong force. At very small separations, the strong force between two nucleons is larger than the repulsive electrical force between two protons--hence its name. But the strong force quickly weakens as the distance between the protons increases. A well-established model for the potential energy of two nucleons interacting via the strong force is U=U0[1−e−x/x0] where x is the distance between the centers of the two nucleons, x0 is a constant having the value x0 = 2.0 × 10−15 m, and U0 = 6.0 × 10−11 J. Quantum effects are essential for a proper understanding of nucleons, but let us innocently consider two neutrons as if they were small, hard, electrically neutral spheres of mass 1.67 ×10−27 kg and diameter 1.0 × 10−15 m. Suppose you hold two neutrons 9.0 × 10−15 m apart, measured between their centers, then release them.What is the speed of each neutron as they crash…arrow_forward
- Protons and neutrons (together called nucleons) are held together in the nucleus of an atom by a force called the strong force. At very small separations, the strong force between two nucleons is larger than the repulsive electrical force between two protons--hence its name. But the strong force quickly weakens as the distance between the protons increases. A well-established model for the potential energy of two nucleons interacting via the strong force is U=U0[1−e−x/x0] where x is the distance between the centers of the two nucleons, x0 is a constant having the value x0 = 2.0 × 10−15 m, and U0 = 6.0 × 10−11 J. Quantum effects are essential for a proper understanding of nucleons, but let us innocently consider two neutrons as if they were small, hard, electrically neutral spheres of mass 1.67 ×10−27 kg and diameter 1.0 × 10−15 m. Suppose you hold two neutrons 2.3 × 10−15 m apart, measured between their centers, then release them.What is the speed of each neutron as they crash…arrow_forwardAsap..arrow_forwardThe force exerted by an electric charge at the origin on a charged particle at the point (x,y,z) with Kĩ position vector r = is F (F) 3 where K is constant. Assume K 15. Find the work done as the particle moves along a straight line from (3,0,0) to (3,2,5)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning