FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Liquid water flows isothermally at 20°C
through a one-inlet, one-exit duct operating
at steady state. The duct's inlet and exit
P2 = 4.8 bar
T = 320°C
diameters are 0.02 m and 0.04 m,
Water vapor
(AV)2 = (AV)3
respectively. At the inlet, the velocity is 50
m/s and the pressure is 1 bar. At the exit,
determine the mass flow rate, in kg/s, and
V, T
A1 = 0.2 m?
P1 = 5 bar
3
velocity, in m/s.
P3= 4.8 bar
T3 = 320°C
A turbine operating under steady-flow
conditions receives steam at the
following state; pssure,100 bar;
specific internal energy 2773 kJ/kg,
velocity 30 m/s. the state of steam
leaving the turbine is as follow:
pressure 1 bar, specific internal energy
2450 kJ/kg, velocity 90 m/s. Heat is
rejected to the surroundings at the
rate of 0.25 kW and the rate of steam
flow through the turbine is 0.4 kg/s
calculate the power developed by the
.turbine
T-7
Knowledge Booster
Similar questions
- 6.14arrow_forward3. A thermodynamic system operates under steady flow conditions, the fluid entering at 2 bar and leaving at 10 bar. The entry velocity is 30 m/s and exit velocity is 10 m/s. During the process 25 MJ/hr of heat from an external source is supplied and the increase in enthalpy is 5kJ/kg. The exit point is 20 m above the entry point. Determine flow work from the system if the fluid flow rate is 45 kg/min.arrow_forwardSteady-state operating data are shown in the figure for an open feedwater heater.Heat transfer from the feedwater heater to its surroundings occurs at an average outer surfacetemperature of 50°C at a rate of 100 kW. Ignore the effects of motion and gravity and let T 0 =25°C, p0 = 1 bar. Determine(a) the ratio of the incoming mass flow rates, ?̇# /?̇ $ .(b) the rate of exergy destruction, in kW.arrow_forward
- pls answer all the given thanksarrow_forwardAir enters a nozzle operating at steady-state at 800°R, with a negligible velocity, and exits with a velocity of 1500 ft/s. Heat transfer occurs from the nozzle to the surroundings at a rate of 10 Btu per lbm of air flowing. Determine the temperature at the exit, °R. Assume: o air is an ideal gas, variable specific heats, and o potential energy effects are negligible.arrow_forwardNeed help breaking it downarrow_forward
- Air flows through a nozzle. It enters at 20 bar and 1100°F and exits at 10 bar and 800°F. The inlet diameter ratio between outlet diameter is 3. Consider steady state, determine air inlet and outlet velocities, in ft/sarrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy QC by heat transfer to a reservoir at TC = 450°R. All energy transfers are positive in the directions of the arrows. Determine:(a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles.(b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 450°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH QH Reservoir at T R1 lo ali R2 Qc Cold reservoir at Te W. cycle W cycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R. respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forward
- Q2: Steam enters a converging-diverging nozzle operating at steady state with Pi=40 bar, T-400C, and a velocity of 10 m/s. The steam flows through the nozzle adiabatically and no significant change in elevation. At the exit, p:=1.5 MPa, and the velocity is 665 m/s. The mass flow rate is 2 kg/s. Determine the exit area of the nozzle, in (m²). also, drive the (T-V) diagram for the steam. י2kg-מ Insulation -15 bar -665 ms 40 bar - 400 "C -10 m's Control volume boundaryarrow_forwardFrom the turbine the heat loss per kg of steam flow rate is 5 kW. Find the power developed in kW by the steam turbine per kg of steam flow rate?arrow_forwardsolve the following problem: Steam enters a turbine operating at steady state at 850oF and 450 lbf/in2 and leaves as a saturated vapor at 1.4 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY