FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
For a system entropy is constant if initialvolume & Pressure of a gas is 10m^3 ,7 barrespectively. Final volume is 5m^3 then find the final pressure.
4. Complete the table below. Show your solutions and draw the corresponding T-s
diagram for each case
Temperatu Specifi
re, °C
Interna Enthalp Entropy Stea
, kJ/kg-
K
Pressur
Steam
Conditio
е, КРa
у, куkg
m
volume | energy
Qualit
у. %
90
m3
, kJ/kg
2000
250
2750
40000
600
Air flows steadily through an engine at a constant temperature, 400K. Find the work per kilogram if the exit pressure is one-third the inlet pressure and the inlet pressure is 207 kPa. Assume that the kinetic and potential energy variation is negligible.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- * :the initial quality (x1) is 2 kg of ammonia is contained in a rigid sealed tank at 10 °C. The surroundings temperature is 95 °C. The ammonia is now heated until all ammonia transferred to saturated vapor at 90 °C. Tank Ammonia, 2 kg Ti = 10°C T₂ = 90 c (Sat. Vap.) ₂ for Tsun. = 95 °C == Q Find Heat transfer of ammonia And total entropy of generationarrow_forwardAn internally reversible process occurs in a system during which Q = – 12 KJ, AU = – 79 KJ and Ah = - 111 KJ A. Find the work if the system is non- flow. B. Determine the work and the change of flow energy if the system is steady state, steady flow system with AEK 4 KJ. %3Darrow_forward200Kg/min superheated steam at 40 bar and 350C enters a turbine through a 7.5cm ID pipe. It exits at 5bar as saturated steam through a 5cm ID pipe neglect the change in potential energy of the system. What is the temperature of the outlet saturated system? How much energy is transferred to or from the turbine?arrow_forward
- 2. If 0.17 kg/s of air are compressed isothermally from Pi = 96 kPaa and V, = 0.13 m/s to p2 = 620 kPaa, find the work, the change of entropy, and heat for: a) a nonflow process, and b) a steady flow process with V1 = 15 m/s and V2 = 60 %3D %3D m/s.arrow_forwardygotins lo 6.69) By injecting liquid water into superheated steam. the desuperheater shown in Fig. P6.69 has a saturated vapor stream at its exit. Steady-state operating data are provided in the accompanying table. Stray heat transfer and all kinetic neand potential energy effects are negligible. (a) Locate states to 1, 2, and 3 on a sketch of the T-s diagram. (b) Determine the rate of entropy production within the de-superheater, K.Modelthe in kW/K. ideal as State p(MPa) T°C) ) v × 10³(m³/kg) u(kJ/kg) h(kJ/kg) s(kJ/kg · K) 1 38 1.0065 X 10-3 166.5 168.3 0.5658 1B 0.1308 320 sat. vap. Y2807.9 3069.5 6.8452 3 1.5 1.159 2519.7 2693.6 7.2233 Desuperheater bol Liquid बेे कत 60°C. Det heet ni water 3. Saturated fos vapor P6.4recom O lo lguons 2 Superheated- vapor honor m2 = 0.03 kg/s motava bogisins odt 1ol,nW niarrow_forwardThermodynamics There is a rigid tank initially with water in a critical state, which after a heat transfer process reaches a pressure of 1 psia. The surrounding temperature is 1540°F. Find the total entropy change. Please draw a scheme.arrow_forward
- Thermodynamics need a cancellations of unitsarrow_forwardPls solve accarrow_forwardSolve please, should 100% sure of ans. Air enters a well-insulated turbine operating at steady state with a negligible velocity at 4 MPa and 300 oC, It exits the turbine at 100 kPa pressure at 100 oC. The diameter of the exit pipe is 60 cm. The velocity at exit is 90 m/s. a. What is the volumetric flow are at the exit? Express your result in units of m3/s. b. What is the molar flow rate at the exit? Assume that at the exit conditions, air may be considered to behave like an ideal gas. Express your results in units of mols/s c. What is the mas flow rate? Express your result in units of kg/s.arrow_forward
- m3 1. if 10 kg/min of air are compressed isothermally fromp, = 96 kPa and V1 = 7.65 тin to p2 = 620 kPa, find the work, the change of entrophy and the heat for (a)nonflow т m process and b) a steady flow process with 1 = 15 and I2 = 60÷. Sarrow_forward4.54 kg mass of water vapor at 100kPa (abs) and an entropy of 8.0333 kJ/kg K; undergo a process at constant pressure to a state where the occupied volume is 1.62 m3/kg. It is requested: a. Plot t-V diagram b. Find the initial temperature (°C) c. Find the quality (%), moisture (%) and final internal energy (kJ)arrow_forward1. A heat pump design creates a heating effect of 35 kW while using 15 kW of electrical power. wwww wwwwn wwwww w The thermal energy reservoirs are at 300 K and 250 K. www ww (a) Show the system sketch and label all the values given on it ww www u w w (b) Demonstrate the 1st law application for this system (c) Find entropy generationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License