FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Need help please :)
Expert Q&A
A counterflow heat exchanger operates at
steady state while being well-insulated from the
surroundings with air and ammonia flowing in
separate streams. Ammonia enters at state 1 with
-20°C and a quality of 20% and exits at state 2 as
saturated vapor at -20°C. Air enters at state 3
with pressure 1 bar and temperature 295 K and
exits at state 4 with pressure 1 bar and
temperature 265 K. The flow rate of air is 10 kg/s. Ignore kinetic and potential energy effects, and
take the dead state as 1 bar and 300 K.
a.
Sketch states 1 and 2 on a T-s diagram, including the liquid-vapor dome.
b.
Describe the heat transfer inside the heat exchanger (what is transferring heat to what?)
c.
Determine the specific enthalpy of each state, in kJ/kg.
d.
Determine the mass flow rate of ammonia, in kg/s.
e.
Determine the rate of exergy destruction within the heat exchanger, in kW.
f.
Devise and evaluate an exergetic efficiency for the heat exchanger.
Done
Q.34
Knowledge Booster
Similar questions
- Air as an ideal gas flows through the compressor and heat exchanger shown in the figure. A separate liquid stream also flows through the heat exchanger. The data given are for operation at steady state. Stray heat transfer to the surroundings can be neglected, as can all kinetic and potential energy changes. Determine the compressor power, in kW, and the mass flow rate of the cooling water, in kg/s.arrow_forwardSeparate streams of steam and air flow through the turbine and heat exchanger arrangement shown in the figure below, where ins = 1500 kg/min and W;1 = 8,000 kW,. Steady-state operating data are provided on the figure. Heat transfer with the surroundings can be neglected, as can all kinetic and potential energy effects. Wn W2 = ? Turbine Turbine 2 P3 = 10 bar T3 =? T = 240°C T2 = 400°C P2= 10 bar P4=1 bar www Steam in 2 T = 600°C PI = 20 bar Ts = 1500 K -5 Ps = 1.35 bar 9. Heat exchanger V T6 = 1200 K P6 = 1 bar Air in Determine: (a) T3, in K. (b) the power output of the second turbine, in kW.arrow_forwardI need help going through the process to solve this problem, I think I have a general idea, but want to make sure I am doing it correctly. A counterflow heat exchanger operates at steady state while being well-insulated from the surroundings with air and ammonia flowing in separate streams. Ammonia enters at state 1 with -30°C and a quality of 30% and exits at state 2 as saturated vapor at -30°C. Air enters at state 3 with pressure 1 bar and temperature 295 K and exits at state 4 with pressure 1 bar and temperature 265 K. The flow rate of air is 10 kg/s. Ignore kinetic and potential energy effects, and take the dead state as 1 bar and 300 K. a. Describe the heat transfer inside the heat exchanger (what is transferring heat to what?) b. Determine the specific enthalpy of each state, in kJ/kg. c. Determine the mass flow rate of ammonia, in kg/s. d. Determine the rate of exergy destruction within the heat exchanger, in kW.e. Devise and evaluate an exergetic efficiency for the heat…arrow_forward
- Separate streams of steam and air flow through the turbine and heat exchanger arrangement shown in the figure below, where air enters location 5 at a rate of 1000 kg/min. The left turbine (Turbine 1) is able to produce 12,000 kW of power. Steady-state operating data are provided on the figure. Heat transfer with the surroundings can be neglected, as can all kinetic and potential energy effects. W2 = ? Turbine Turbine 2 P3 = 10 bar T3 = ? T2 = 400°C_ P2= 10 bar T = 240°C P4 = 1 bar Steam in P1 = 20 bar +6 T = 600°C www T5 = 1500 K -5 Ps = 1.35 bar Heat exchanger V T = 1200 K P6 = 1 bar Air in Determine: T3, in °C. • the mass flow rate of steam at 1, in kg/s. • the power output of the second turbine, in kW. • the magnitude of heat transfer between the steam and air, in kW. • the direction of the heat transfer (i.e., to the steam or from the steam).arrow_forwardSteady-state operating data are provided for a compressor and heat exchanger in the figure below. The power input to the compressor is 50 kW. As shown in the figure, nitrogen (N2) flows through the compressor and heat exchanger with mass flow rate of 0.25 kg/s. The nitrogen is modeled as an ideal gas. A separate cooling stream of helium, modeled as an ideal gas with k=1.67, also flows through the heat exchanger. Stray heat transfer and kinetic and potential energy effects are negligible. Find: a) Enthalpy change of Nitrogen from inlet to the compressor and exit from Heat exchanger, ( ℎ1-ℎ3) in kJ/kg, b) Enthalpy change of Helium from inlet to and exit from Heat exchanger, (ℎ5-ℎ4) in kJ/kg, c) Mass flow rate of the helium in kg/s.arrow_forwardSeparate streams of air and water flow through the compressor and heat exchanger arrangement shown in the figure below, where m, 0.6 kg/s and To = 30°C. Steady-state operating data are provided on the figure. Heat transfer with the surroundings can be neglected, as can all kinetic and potential energy effects. The air is modeled as an ideal gas. 1 Air P₁ = 1 bar T₁ = 300 K m Compressor A P2=3 bar -2 T₂=600 K Determine: WEVA ܒܝ www wwww +6 T6, P6-Ps P₁ = 9 bar T₁=800 K Compressor B 3- P3 P2 T₁=450 K Heat exchanger 5+ 4 Water T5= 20°C Ps= 1 bar (a) the total power for both compressors, in kW. (b) the mass flow rate of the water, in kg/s. WevB =arrow_forward
- 1. As shown in the following figure, a diffuser has one inlet (i) and one outlet (e). Liquid water flows through the diffuser. The diffuser runs at a steady state. The pressure of the water is 3 bar. The temperature of the water is 300 K. The specific volume of water is 0.001 m³/kg. The mass flow rate at the inlet is mį = 1 kg/s. The cross area of the inlet is A; 10 cm². The cross area of the outlet is Ae 50 cm². Determine the following components: = = (i) The mass flow rate at the outlet me (ii) The volumetric flow rate at the inlet and outlet, (AV); and (AV)ė, respectively. (iii) The velocity of water flow at the inlet and outlet, V¡ and Vė, respectively. (iv) The specific enthalpy change of the control volume: h₂ — h₁. (v) Discuss the possible function of this diffuser. i earrow_forwardSeparate streams of air and water flow through the compressor and heat exchanger arrangement shown in the figure below, where m˙1= 0.6 kg/s and T6= 50°C. Steady-state operating data are provided on the figure. Heat transfer with the surroundings can be neglected, as can all kinetic and potential energy effects. The air is modeled as an ideal gas. Determine:(a) the total power for both compressors, in kW.(b) the mass flow rate of the water, in kg/s.arrow_forwardThe figure below provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant 134a enters the valve at a pressure of 9 bar and is throttled to a pressure of p2 = 2 bar. The refrigerant then enters the heat exchanger, exiting at a temperature of 10°C with no significant decrease in pressure. In a separate stream, liquid water at 1 bar enters the heat exchanger at a temperature of 25°C with a mass flow rate of m˙4= 4 kg/s and exits at 1 bar as liquid at a temperature of 15°C. Stray heat transfer and kinetic and potential energy effects can be ignored. Determine:(a) the temperature, in °C, of the refrigerant at the exit of the valve.(b) the mass flow rate of the refrigerant, in kg/s.arrow_forward
- Parts A-C have already been answered in a previous question I sub A counterflow heat exchanger operates at steady state while being well-insulated from the surroundings with air and ammonia flowing in separate streams. Ammonia enters at state 1 with -30°C and a quality of 30% and exits at state 2 as saturated vapor at -30°C. Air enters at state 3 with pressure 1 bar and temperature 295 K and exits at state 4 with pressure 1 bar and temperature 265 K. The flow rate of air is 10 kg/s. Ignore kinetic and potential energy effects, and take the dead state as 1 bar and 300 K. a. Describe the heat transfer inside the heat exchanger (what is transferring heat to what?) b. Determine the specific enthalpy of each state, in kJ/kg. c. Determine the mass flow rate of ammonia, in kg/s. d. Determine the rate of exergy destruction within the heat exchanger, in kW.e. Devise and evaluate an exergetic efficiency for the heat exchanger.arrow_forwardThe figure below provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant 134a enters the valve at a pressure of 9 bar and is throttled to a pressure of p2 = 1 bar. The refrigerant then enters the heat exchanger, exiting at a temperature of 10°C with no significant decrease in pressure. In a separate stream, liquid water at 1 bar enters the heat exchanger at a temperature of 25°C with a mass flow rate of m4 = 4 kg/s and exits at 1 bar as liquid at a temperature of 15°C. Stray heat transfer and kinetic and potential energy effects can be ignored. -Heat exchanger 1 2 3 wwww P3 = P2 T3 = 10°C Saturated liquid R-134a at p, = 9 bar Valve P2 5 T5 = 15°C P5 = P4 Water T = 25°C P4 = 1 bar Determine: (a) the temperature, in °C, of the refrigerant at the exit of the valve. (b) the mass flow rate of the refrigerant, in kg/s.arrow_forwardOil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c= 2 kJ/kg · K. If the designer wants to ensure no water vapor is present in the exiting water stream, what is the minimum mass flow rate for the water, in kg/s? mwater,min = i kg/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY