FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
One-tenth kmol of carbon monoxide (CO) in a piston- cylinder assembly undergoes a process from p1= 150 kPa, T1 = 300 K to p2 =
500 kPa, T2 = 470 K. For the process, W = -300 kJ.
Employing the ideal gas model, determine:
(a) the heat transfer, in kJ.
(b) the change in entropy, in kJ/K.
A 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be
modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively.
(a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F.
Ignore heat transfer between the system and its surroundings.
Tf =
i
°F
(b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R.
Ignore heat transfer between the system and its surroundings.
O =
i
Btu/°R
Touthoolk ond Medie
A rigid, well-insulated tank contains a two-phase mixture of ammonia with 0.0022 ft3 of saturated liquid and 1.5 ft³ of saturated vapor,
initially at p₁ = 50 lb/in². A paddle wheel stirs the mixture until only saturated vapor at higher pressure, p2, remains in the tank.
Kinetic and potential energy effects are negligible.
Determine the pressure p2, in lb/in², and the amount of energy transfer by work, in Btu.
Knowledge Booster
Similar questions
- Water, initially saturated vapor at 3 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C. For the water, determine the heat transfer, in kJ per kg of water. Kinetic and potential energy effects can be ignored. Q/m =_kJ/kgarrow_forwardA rigid, well-insulated tank contains a two-phase mixture of ammonia with 0.0022 ft³ of saturated liquid and 1.5 ft3 of saturated vapor, initially at p₁ = 70 lb/in². A paddle wheel stirs the mixture until only saturated vapor at higher pressure, p2, remains in the tank. Kinetic and potential energy effects are negligible. Determine the pressure p2, in lb/in², and the amount of energy transfer by work, in Btu. Step 1 * Your answer is incorrect. Determine p2, in lb/in². P2= i81.56 lb/in²arrow_forwardTwo kg of oxygen fills the cylinder of a piston–cylinder assembly. The initial volume and pressure are 2 m3 and 1 bar, respectively. Heat transfer to the oxygen occurs at constant pressure until the volume is doubled. Determine the heat transfer for the process, in kJ, assuming the specific heat ratio is constant, k = 1.35. Kinetic and potential energy effects can be ignored.arrow_forward
- Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = 0.60792 Hint Your answer is correct. Step 2 * Your answer is incorrect. Determine the work, in Btu. W12= -53.4318 eTextbook and Media Hint lb Btu Attempts: 1 of 4 used Assistance Usedarrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 20 lb/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = i Save for Later lb Attempts: 0 of 4 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forward
- Need help going through the process of solving this problem to see where I'm going right, and where I'm going wrong One kg of carbon dioxide (CO2), in a piston-cylinder assembly, initially at 90°F, 30 lbf/in^2, is compressed isothermally to a final pressure of 110 lbf/in^2. During compression, the nitrogen rejects energy by heat transfer through the cylinder’s end wall, which has inner and outer temperatures of 90°F and 80°F, respectively. Let T0 = 80°F, and P0 = 15.5 lbf/in^2. Using the ideal gas model for the carbon dioxide. Consider carbon dioxide as the system: a. Determine the amount of work required for the compression, in Btu. b. Determine the exergy transfer accompanying the work, in Btu. c. Determine the exergy transfer accompanying the heat transfer, in Btu. d. Determine the exergy destroyed during the process, in Btu.arrow_forwardReferring to the figure shown below, water contained in a piston–cylinder assembly, initially at 1.5 bar and a quality of 20%, is heated at constant pressure until the piston hits the stops. Heating then continues until the water is saturated vapor. The initial height, L1, is 0.05 m and the change in height, L2, is 0.02 m. For the overall process of the water, evaluate the work and heat transfer, each in kJ/kg.Kinetic and potential effects are negligible.arrow_forwardParrow_forward
- Two kg of oxygenarrow_forwardA rigid tank whose volume is 4 mở, initially containing air at 1 bar, 295 K, is connected by a valve to a large vessel holding air at 6 bar, 295 K. The valve is opened only as long as required to fill the tank with air to a pressure of 6 bar and a temperature of 350 K. Assuming the ideal gas model for the air, determine the heat transfer between the tank contents and the surroundings, in kJ. Qev i 339.86 kJarrow_forwardRefrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -12oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored.Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW. The volume metric flow rate of .05262 m^3/s is correct. My power input is incorrect. See attachedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY