FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Low-velocity steam with negligible kinetic energy enters a nozzle at 320°C, 3 MPa. The steam leaves the nozzle at 2 MPa with a velocity of 410 m/s. The mass flow rate is 0.37 kg/s. Find the following:a. Determine the exit state.b. Determine the exit area.
1. A closed tank, V = 10 L, containing 5 kg of water initially at 25 °C, is heated to 150 ° C by a heat
pump that is receiving heat from the surroundings at 25 ° C. Assume that this process is reversible.
Find the heat transfer to the water and its change in entropy.
Question 3:
Superheated steam enters a turbine at 7 MPa, 550°C, and exits at 150kPa
a. Draw the system.
b. If the process is reversible adiabatic (isentropic), find the final temperature (T2), the
final enthalpy (h2,) of the steam, and do the energy balance to calculate the turbine
work (Wts).
c. Using entropy balance, show that Sgen for the above process is 0.
d. If the isentropic efficiency is 85%, find the actual final temperature (T23)
and calculate Sgen?
e. Plot process in (b) and (d) on a Ts diagram with proper labelling.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air enters an adiabatic nozzle at 230 kPa, 600°C with a velocity of 60 m/s. The air is at 70 kPa, 450°C at the exit of the nozzle. Model the air as an ideal gas having constant specific heats, using 300 K values from Cengel's tables posted on Canvas. a) Find the exit velocity of the air (answer: 552.4 m/s). b) Find the isentropic efficiency of the nozzle (answer: 0.599).arrow_forwardGive me right solution.. Urgent pleasearrow_forwardCalculate the change in entropy of air, if it is throttled from 5 bar, 27°C to 2 bar adiabaticallyarrow_forward
- Vapor Nozzle Due to a failure, ammonia in a large container overheats to 14 bar, 300°C. At this state, a small crack opens in the container that acts as a nozzle. The outside environment is at 1bar, 25°C, and the mass flow rate of ammonia is 10 kg/s. Assume negligible nozzle inlet velocity and adiabatic reversible flow. Determine the exit velocity, and the exit cross section.arrow_forwardGiven 0.603MW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). a) Calculate the total rate of entropy production b) Calculate the total rate of exergy destruction (W). The dead state temperature is 293.2 K and pressure is 1 bar. c) Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.arrow_forward2.A piston cylinder arrangement contains steam at 10MPaa saturated liquid. Heat was transferred isothermally so that the pressure reaches 2MPaa. а. Find the final temperature of the steam. b. Find the change of entropy in kJ/kg if there is no entropy production.arrow_forward
- A turbine, operating under steady- flow conditions, reccives 1000 kg/min of stcam. At the inlet, the pressure is 30 bar, the temperature is 400°C, the velocity At the exit, the pressure is 0.7 bar, the quality is (100%), and the velocity is 100 m/s. If the turbine produced a power output of 9300 KW. By using the energy balance of open system with sutable tables, answer the following: (a) What are the main assumptions ? (b) Calculate dh, AKe ? (c) Calculate the rate of heat transfer between the turbine and surroundings, in kW.arrow_forwardAir as ideal gas in the closed system, find the change of entropy from the initial to the final state, in Btu/lb oR ( degree R ). T1 = 360 oF (degree F), P1 = 14.7 psia T2 = 540 oF (degree F), P2 = 58.8 psiaarrow_forwardheat engine used a steam as working fluid has 3 kg/s and initial the steam undergoes to expansion process is 8 bar, dryness fraction ( 65) percent , and the expansion follows the law (PV¹.¹-C), down to a pressure of 0.3 bar. Calculate the change of entropy of steam during the process.arrow_forward
- Air enters an insulated compressor at ambient conditions, 100 kPa, 20 oC at the rate of 0.2 kg/s and exits at 500 K. The isentropic efficiency of the compressor is 70%. What is the exit pressure? How much power is required to drive the compressor? Assume specific heats at room temperatures.arrow_forward1. A piston/cylinder setup contains air at 100 kPa,400 K that is compressed to a final pressure of 1000 kPa. Consider two different processes: (a) a reversible adiabatic process and (b) a reversible isothermal process.arrow_forwardQ3. 1000 kJ of heat are transferred irreversibly and isothermally at atemperature of 800 K. The temperature of surrounding is 300 K. a. What is the maximum work that can be obtained frome this isothermal heat transfer? b. What is the amount of heat that regected to the surrounding? c. What is the entropy change of the two reservoirs? d. What is the total entropy change? Ans: a. 625 kJ b. 375 kJ c.-1.2, 1.25KJ/k d. zeroarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license