(III) We usually neglect the mass of a spring if it is small compared to the truss attached to it. But in some applications, the mass of the spring must be taken into account. Consider a spring of unstretched length l and mass M S uniformly distributed along the length of the spring. A mass m is attached to the end of the spring. One end of the spring is fixed and the mass m is allowed to vibrate horizontally without friction (Fig. 7–30). Each point on the spring moves with a velocity proportional to the distance from that point to the fixed end. For example, if the mass on the end moves with speed ϑ 0 , the midpoint of the spring moves with speed ϑ 0 / 2 Show that the kinetic energy of the mass plus spring when the mass is moving with velocity ϑ is K = 1 2 M ϑ 2 where M = m 1 3 M S is the “effective mass” of the system. [ Hint : Let D be the total length of the stretched spring. Then the velocity of a mass d m of a spring of length d x located at x is ϑ ( x ) − ϑ 0 ( x / D ) . Note also d m = d x ( M S / D ) .] FIGURE 7-30 Problem 68.
(III) We usually neglect the mass of a spring if it is small compared to the truss attached to it. But in some applications, the mass of the spring must be taken into account. Consider a spring of unstretched length l and mass M S uniformly distributed along the length of the spring. A mass m is attached to the end of the spring. One end of the spring is fixed and the mass m is allowed to vibrate horizontally without friction (Fig. 7–30). Each point on the spring moves with a velocity proportional to the distance from that point to the fixed end. For example, if the mass on the end moves with speed ϑ 0 , the midpoint of the spring moves with speed ϑ 0 / 2 Show that the kinetic energy of the mass plus spring when the mass is moving with velocity ϑ is K = 1 2 M ϑ 2 where M = m 1 3 M S is the “effective mass” of the system. [ Hint : Let D be the total length of the stretched spring. Then the velocity of a mass d m of a spring of length d x located at x is ϑ ( x ) − ϑ 0 ( x / D ) . Note also d m = d x ( M S / D ) .] FIGURE 7-30 Problem 68.
(III) We usually neglect the mass of a spring if it is small compared to the truss attached to it. But in some applications, the mass of the spring must be taken into account. Consider a spring of unstretched length
l
and mass
M
S
uniformly distributed along the length of the spring. A mass
m
is attached to the end of the spring. One end of the spring is fixed and the mass m is allowed to vibrate horizontally without friction (Fig. 7–30). Each point on the spring moves with a velocity proportional to the distance from that point to the fixed end. For example, if the mass on the end moves with speed
ϑ
0
, the midpoint of the spring moves with speed
ϑ
0
/
2
Show that the kinetic energy of the mass plus spring when the mass is moving with velocity
ϑ
is
K
=
1
2
M
ϑ
2
where
M
=
m
1
3
M
S
is the “effective mass” of the system. [Hint: Let D be the total length of the stretched spring. Then the velocity of a mass
d
m
of a spring of length
d
x
located at
x
is
ϑ
(
x
)
−
ϑ
0
(
x
/
D
)
. Note also
d
m
=
d
x
(
M
S
/
D
)
.]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.