
Concept explainers
Why do we expect the elements of life to be widely available on other worlds? How does the requirement of organic building blocks further constrain the prospects of habitability?

The reason to expect the elements of life to be widely available on other worlds and also requirement of organic building blocks and the way in which they constrain the prospects of habitability.
Answer to Problem 1RQ
Every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds and requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Explanation of Solution
The basic environmental requirement of life is the presence of atmosphere where humans can breathe, abundant surface water that is drinkable, combination of surface pressure and temperature and some set of chemical elements from which cells are formed.
The four basic chemical elements that make up
The reason to expect the presence of elements of life on other worlds is that all the other worlds are formed through the same process of accretion of gases and condensation sameas Earth.
All chemical elements except hydrogen and helium were produced by stars. Therefore they are present everywhere.
The most important element, such as, oxygen, nitrogen and carbon are also the third, sixth and fourth most abundant element in the universe while all the other heavy elements are quite rare compared to helium and hydrogen but they are also present in every star system.
Hence, every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds.
According to nebular theory of formation of solar system, the planets were formed by the process of condensation of gas in the solar nebula when solid particles condensed and these particles then accreted into planets, comets, moons and asteroids.
As long as condensation and accretion occur, there is always a possibility to find elements in other worlds.
The chemical elements are not the only thing which makes the life habitable other requirements such as water, atmosphere and, combination of surface pressure and temperature are the basic requirements which constraints the prospects ofhabitability.
One more important requirement is the presence of these elements in molecules that are used as building blocks of life; most of the organic molecules are created by some chemical reactions on the surface or somewhere deep in the oceans and some molecules are created by heat and pressure.
Chemical reactions would likely occur only on worlds with atmospheres or oceans. Therefore, requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Conclusion:
Thus, every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds and requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Want to see more full solutions like this?
Chapter 7 Solutions
Life in the Universe (4th Edition)
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
- Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s. Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.arrow_forwardRocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).arrow_forwardFormant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forward
- microwavearrow_forward4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forwardRefer to the image attachedarrow_forward
- Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardMake up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forwardA straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forward
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





