Concept explainers
Why do we expect the elements of life to be widely available on other worlds? How does the requirement of organic building blocks further constrain the prospects of habitability?
The reason to expect the elements of life to be widely available on other worlds and also requirement of organic building blocks and the way in which they constrain the prospects of habitability.
Answer to Problem 1RQ
Every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds and requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Explanation of Solution
The basic environmental requirement of life is the presence of atmosphere where humans can breathe, abundant surface water that is drinkable, combination of surface pressure and temperature and some set of chemical elements from which cells are formed.
The four basic chemical elements that make up
The reason to expect the presence of elements of life on other worlds is that all the other worlds are formed through the same process of accretion of gases and condensation sameas Earth.
All chemical elements except hydrogen and helium were produced by stars. Therefore they are present everywhere.
The most important element, such as, oxygen, nitrogen and carbon are also the third, sixth and fourth most abundant element in the universe while all the other heavy elements are quite rare compared to helium and hydrogen but they are also present in every star system.
Hence, every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds.
According to nebular theory of formation of solar system, the planets were formed by the process of condensation of gas in the solar nebula when solid particles condensed and these particles then accreted into planets, comets, moons and asteroids.
As long as condensation and accretion occur, there is always a possibility to find elements in other worlds.
The chemical elements are not the only thing which makes the life habitable other requirements such as water, atmosphere and, combination of surface pressure and temperature are the basic requirements which constraints the prospects ofhabitability.
One more important requirement is the presence of these elements in molecules that are used as building blocks of life; most of the organic molecules are created by some chemical reactions on the surface or somewhere deep in the oceans and some molecules are created by heat and pressure.
Chemical reactions would likely occur only on worlds with atmospheres or oceans. Therefore, requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Conclusion:
Thus, every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds and requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Want to see more full solutions like this?
Chapter 7 Solutions
Life in the Universe (4th Edition)
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
- Details solution No chatgpt plsarrow_forwardPlease solve and answer the problem correctly please.Thank you!!arrow_forwardWill you please walk me through the calculations in more detail for solving this problem? I am a bit rusty on calculus and confused about the specific steps of the derivation: https://www.bartleby.com/solution-answer/chapter-3-problem-15e-modern-physics-2nd-edition/9780805303087/7cf8c31d-9476-46d5-a5a9-b897b16fe6fcarrow_forward
- please help with the abstract. Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.arrow_forwardUsing the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2arrow_forwardIn the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?arrow_forward
- No chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning