
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.4, Problem 1E
A 360-lb gorilla climbs a tree to a height of 20 ft. Find the work done if the gorilla reaches that height in
(a) 10 seconds
(b) 5 seconds
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Consider the region below f(x) = (11-x), above the x-axis, and between x = 0 and x = 11. Let x; be the midpoint of the ith subinterval. Complete parts a. and b. below.
a. Approximate the area of the region using eleven rectangles. Use the midpoints of each subinterval for the heights of the rectangles.
The area is approximately square units. (Type an integer or decimal.)
Rama/Shutterstock.com
Romaset/Shutterstock.com
The power station has three different hydroelectric turbines, each with a known (and unique)
power function that gives the amount of electric power generated as a function of the water
flow arriving at the turbine. The incoming water can be apportioned in different volumes to
each turbine, so the goal of this project is to determine how to distribute water among the
turbines to give the maximum total energy production for any rate of flow.
Using experimental evidence and Bernoulli's equation, the following quadratic models were
determined for the power output of each turbine, along with the allowable flows of operation:
6
KW₁ = (-18.89 +0.1277Q1-4.08.10 Q) (170 - 1.6 · 10¯*Q)
KW2 = (-24.51 +0.1358Q2-4.69-10 Q¹²) (170 — 1.6 · 10¯*Q)
KW3 = (-27.02 +0.1380Q3 -3.84-10-5Q) (170 - 1.6-10-ºQ)
where
250 Q1 <1110, 250 Q2 <1110, 250 <3 < 1225
Qi = flow through turbine i in cubic feet per second
KW
=
power generated by turbine i in kilowatts
Hello! Please solve this practice problem step by step thanks!
Chapter 6 Solutions
Calculus: Early Transcendentals
Ch. 6.1 - Find the area of the shaded region.Ch. 6.1 - Find the area of the shaded region.Ch. 6.1 - Find the area of the shaded region.Ch. 6.1 - Find the area of the shaded region.Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....
Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Prob. 29ECh. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Use calculus to find the area of the triangle with...Ch. 6.1 - Use calculus to find the area of the triangle with...Ch. 6.1 - Evaluate the integral and interpret it as the area...Ch. 6.1 - Evaluate the integral and interpret it as the area...Ch. 6.1 - Use a graph to find approximate x-coordinates of...Ch. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Graph the region between the curves and use your...Ch. 6.1 - Prob. 42ECh. 6.1 - Prob. 43ECh. 6.1 - Prob. 44ECh. 6.1 - Sketch the region in the xy-plane defined by the...Ch. 6.1 - Racing cars driven by Chris and Kelly are side by...Ch. 6.1 - The widths (in meters) of a kidney-shaped swimming...Ch. 6.1 - A cross-section of an airplane wing is shown....Ch. 6.1 - If the birth rate of a population is b(t) =...Ch. 6.1 - In Example 5, we modeled a measles pathogenesis...Ch. 6.1 - Prob. 52ECh. 6.1 - Two cars, A and B, start side by side and...Ch. 6.1 - The figure shows graphs of the marginal revenue...Ch. 6.1 - The curve with equation y2 = x2(x + 3) is called...Ch. 6.1 - Find the area of the region bounded by the...Ch. 6.1 - Find the number b such that the line y = b divides...Ch. 6.1 - (a) Find the number a such that the line x = a...Ch. 6.1 - Find the values of c such that the area of the...Ch. 6.1 - Suppose that 0 c /2. For what value of c is the...Ch. 6.1 - For what values of m do the line y = mx and the...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Use a graph to find approximate x-coordinates of...Ch. 6.2 - Use a graph to find approximate x-coordinates of...Ch. 6.2 - Each integral represents the volume of a solid....Ch. 6.2 - Each integral represents the volume of a solid....Ch. 6.2 - Each integral represents the volume of a solid....Ch. 6.2 - Each integral represents the volume of a solid....Ch. 6.2 - A CAT scan produces equally spaced cross-sectional...Ch. 6.2 - A log 10 m long is cut at 1-meter intervals and...Ch. 6.2 - (a) If the region shown in the figure is rotated...Ch. 6.2 - Find the volume of the described solid S. A right...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A cap of...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The...Ch. 6.2 - The base of S is a circular disk with radius r....Ch. 6.2 - (a) Set up an integral for the volume of a solid...Ch. 6.2 - Prob. 64ECh. 6.2 - (a) Cavalieris Principle states that if a family...Ch. 6.2 - Find the volume common to two circular cylinders,...Ch. 6.2 - Prob. 67ECh. 6.2 - A bowl is shaped like a hemisphere with diameter...Ch. 6.2 - A hole of radius r is bored through the middle of...Ch. 6.2 - A hole of radius r is bored through the center of...Ch. 6.2 - Some of the pioneers of calculus, such as Kepler...Ch. 6.2 - Suppose that a region has area A and lies above...Ch. 6.3 - Let S be the solid obtained by rotating the region...Ch. 6.3 - Let S be the solid obtained by rotating the region...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Let V be the volume of the solid obtained by...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - Use the Midpoint Rule with n = 5 to estimate the...Ch. 6.3 - If the region shown in the figure is rotated about...Ch. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Use a graph to estimate the x-coordinates of the...Ch. 6.3 - Prob. 34ECh. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - Let T be the triangular region with vertices (0,...Ch. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Use cylindrical shells to find the volume of the...Ch. 6.3 - Use cylindrical shells to find the volume of the...Ch. 6.4 - A 360-lb gorilla climbs a tree to a height of 20...Ch. 6.4 - How much work is done when a hoist lifts a 200-kg...Ch. 6.4 - Prob. 3ECh. 6.4 - When a particle is located a distance x meters...Ch. 6.4 - Shown is the graph of a force function (in...Ch. 6.4 - Prob. 6ECh. 6.4 - A force of 10 lb is required to hold a spring...Ch. 6.4 - A spring has a natural length of 40 cm. If a 60-N...Ch. 6.4 - Suppose that 2 J of work is needed to stretch a...Ch. 6.4 - If the work required to stretch a spring 1 ft...Ch. 6.4 - A spring has natural length 20 cm. Compare the...Ch. 6.4 - If 6 J of work is needed to stretch a spring from...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - Suppose that for the tank in Exercise 23 the pump...Ch. 6.4 - Solve Exercise 24 if the tank is half full of oil...Ch. 6.4 - When gas expands in a cylinder with radius r, the...Ch. 6.4 - In a steam engine the pressure P and volume V of...Ch. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - (a) Newtons Law of Gravitation states that two...Ch. 6.4 - The Great Pyramid of King Khufu was built of...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - (a) Find the average value of f on the given...Ch. 6.5 - (a) Find the average value of f on the given...Ch. 6.5 - (a) Find the average value of f on the given...Ch. 6.5 - Prob. 12ECh. 6.5 - If f is continuous and 13f(x)dx=8, show that f...Ch. 6.5 - Find the numbers b such that the average value of...Ch. 6.5 - Find the average value of f on [0, 8].Ch. 6.5 - The velocity graph of an accelerating car is...Ch. 6.5 - In a certain city the temperature (in F) t hours...Ch. 6.5 - The velocity v of blood that flows in a blood...Ch. 6.5 - The linear density in a rod 8 m long is...Ch. 6.5 - (a) A cup of coffee has temperature 95C and takes...Ch. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Use the result of Exercise 5.5.83 to compute the...Ch. 6.5 - Use the diagram to show that if f is concave...Ch. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6 - (a) Draw two typical curves y = f(x) and y = g(x),...Ch. 6 - Suppose that Sue runs faster than Kathy throughout...Ch. 6 - Prob. 3RCCCh. 6 - Prob. 4RCCCh. 6 - Suppose that you push a book across a 6-meter-long...Ch. 6 - Prob. 6RCCCh. 6 - Find the area of the region bounded by the given...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Prob. 3RECh. 6 - Find the area of the region bounded by the given...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Prob. 7RECh. 6 - Find the volume of the solid obtained by rotating...Ch. 6 - Find the volume of the solid obtained by rotating...Ch. 6 - Find the volume of the solid obtained by rotating...Ch. 6 - Prob. 11RECh. 6 - Set up, but do not evaluate, an integral for the...Ch. 6 - Prob. 13RECh. 6 - Set up, but do not evaluate, an integral for the...Ch. 6 - Find the volumes of the solids obtained by...Ch. 6 - Let be the region in the first quadrant bounded...Ch. 6 - Prob. 17RECh. 6 - Let be the region bounded by the curves y = 1 x2...Ch. 6 - Prob. 19RECh. 6 - Each integral represents the volume of a solid....Ch. 6 - Each integral represents the volume of a solid....Ch. 6 - Each integral represents the volume of a solid....Ch. 6 - The base of a solid is a circular disk with radius...Ch. 6 - The base of a solid is the region bounded by the...Ch. 6 - Prob. 25RECh. 6 - Prob. 26RECh. 6 - Prob. 27RECh. 6 - A 1600-lb elevator is suspended by a 200-ft cable...Ch. 6 - A tank full of water has the shape of a paraboloid...Ch. 6 - A steel tank has the shape of a circular cylinder...Ch. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 1PCh. 6 - There is a line through the origin that divides...Ch. 6 - The figure shows a horizontal line y = c...Ch. 6 - A cylindrical glass of radius r and height L is...Ch. 6 - (a) Show that the volume of a segment of height h...Ch. 6 - Archimedes Principle states that the buoyant force...Ch. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - The figure shows a curve C with the property that,...Ch. 6 - A paper drinking cup filled with water has the...Ch. 6 - A clepsydra, or water clock, is a glass container...Ch. 6 - A cylindrical container of radius r and height L...Ch. 6 - Prob. 13PCh. 6 - If the tangent at a point P on the curve y = x3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Hello, I would like step by step solution on this practive problem please and thanks!arrow_forwardHello! Please Solve this Practice Problem Step by Step thanks!arrow_forwarduestion 10 of 12 A Your answer is incorrect. L 0/1 E This problem concerns hybrid cars such as the Toyota Prius that are powered by a gas-engine, electric-motor combination, but can also function in Electric-Vehicle (EV) only mode. The figure below shows the velocity, v, of a 2010 Prius Plug-in Hybrid Prototype operating in normal hybrid mode and EV-only mode, respectively, while accelerating from a stoplight. 1 80 (mph) Normal hybrid- 40 EV-only t (sec) 5 15 25 Assume two identical cars, one running in normal hybrid mode and one running in EV-only mode, accelerate together in a straight path from a stoplight. Approximately how far apart are the cars after 15 seconds? Round your answer to the nearest integer. The cars are 1 feet apart after 15 seconds. Q Search M 34 mlp CHarrow_forward
- Find the volume of the region under the surface z = xy² and above the area bounded by x = y² and x-2y= 8. Round your answer to four decimal places.arrow_forwardУ Suppose that f(x, y) = · at which {(x, y) | 0≤ x ≤ 2,-x≤ y ≤√x}. 1+x D Q Then the double integral of f(x, y) over D is || | f(x, y)dxdy = | Round your answer to four decimal places.arrow_forwardD The region D above can be describe in two ways. 1. If we visualize the region having "top" and "bottom" boundaries, express each as functions of and provide the interval of x-values that covers the entire region. "top" boundary 92(x) = | "bottom" boundary 91(x) = interval of values that covers the region = 2. If we visualize the region having "right" and "left" boundaries, express each as functions of y and provide the interval of y-values that covers the entire region. "right" boundary f2(y) = | "left" boundary fi(y) =| interval of y values that covers the region =arrow_forward
- Find the volume of the region under the surface z = corners (0,0,0), (2,0,0) and (0,5, 0). Round your answer to one decimal place. 5x5 and above the triangle in the xy-plane witharrow_forwardGiven y = 4x and y = x² +3, describe the region for Type I and Type II. Type I 8. y + 2 -24 -1 1 2 2.5 X Type II N 1.5- x 1- 0.5 -0.5 -1 1 m y -2> 3 10arrow_forwardGiven D = {(x, y) | O≤x≤2, ½ ≤y≤1 } and f(x, y) = xy then evaluate f(x, y)d using the Type II technique. 1.2 1.0 0.8 y 0.6 0.4 0.2 0- -0.2 0 0.5 1 1.5 2 X X This plot is an example of the function over region D. The region identified in your problem will be slightly different. y upper integration limit Integral Valuearrow_forward
- This way the ratio test was done in this conflicts what I learned which makes it difficult for me to follow. I was taught with the limit as n approaches infinity for (an+1)/(an) = L I need to find the interval of convergence for the series tan-1(x2). (The question has a table of Maclaurin series which I followed as well) https://www.bartleby.com/solution-answer/chapter-92-problem-7e-advanced-placement-calculus-graphical-numerical-algebraic-sixth-edition-high-school-binding-copyright-2020-6th-edition/9781418300203/2c1feea0-c562-4cd3-82af-bef147eadaf9arrow_forwardSuppose that f(x, y) = y√√r³ +1 on the domain D = {(x, y) | 0 ≤y≤x≤ 1}. D Then the double integral of f(x, y) over D is [ ], f(x, y)dzdy =[ Round your answer to four decimal places.arrow_forwardConsider the function f(x) = 2x² - 8x + 3 over the interval 0 ≤ x ≤ 9. Complete the following steps to find the global (absolute) extrema on the interval. Answer exactly. Separate multiple answers with a comma. a. Find the derivative of f (x) = 2x² - 8x+3 f'(x) b. Find any critical point(s) c within the intervl 0 < x < 9. (Enter as reduced fraction as needed) c. Evaluate the function at the critical point(s). (Enter as reduced fraction as needed. Enter DNE if none of the critical points are inside the interval) f(c) d. Evaluate the function at the endpoints of the interval 0 ≤ x ≤ 9. f(0) f(9) e. Based on the above results, find the global extrema on the interval and where they occur. The global maximum value is at a The global minimum value is at xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY