FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s,
respectively. At the exit, the temperature is 480°R and the pressure is 40 lb/in?. The area of the exit is 0.0085 ft². Use the ideal gas
model with k-1.67, and neglect potential energy effects.
Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s.
Step 1
Your answer is correct
Determine the velocity at the exit, in ft/s.
V₂- 677.088
Hint
Step 2
ft/s
Determine the mass flow rate, in lb/s, through the nozzle.
m = i
lb/s
Attempts: 2 of 4 used
6.14
Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 570oR and 150 ft/s, respectively. At the exit, the temperature is 460oR and the pressure is 40 lbf/in2. The area of the exit is 0.0085 ft2. Use the ideal gas model with k = 1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s.
Knowledge Booster
Similar questions
- Steam at 44 bar and a dryness fraction, x = 0.9 is throttled to a pressure of 12 bar. Calculate thedifference in power output in kilowatts between the following two expansion processes:a) Steam at the initial pressure of 44 bar and x = 0.9 at State 1 is expanded in a turbine to State 3 at 0.12 bar.b) Steam at the reduced pressure of 12 bar after throttling at State 2 is expanded in another turbine to State 4 at the same exhaust pressure of 0.12 bar.The mass flow rate of steam is 8 kg/sec in both cases and the expansion in both turbines can be assumed to be reversible and adiabatic. Sketch both expansion processes on the same T-s diagram using the respective initial and final state points as described above.Explain the reason for the difference in power output.Calculate the mass flow rate of steam for the turbine operating at the throttled/reduced pressure to generate the same output as the turbine operating at the pressure before throttling.NOTE: You are required to number the state…arrow_forwardAir contained in a rigid, insulated tank fitted with a .paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m2, is stirred until its temperature is 500 K. Assuming the ideal gas model for the air, and ignoring kinetic and potential energy, determine (a) the final pressure, in bar, (b) the work, in kJ, and (c) the amount of entropy produced, in kJ/K. Solve usingarrow_forwardArgon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 590°R and 150 ft/s, respectively. At the exit, the temperature is 440°R and the pressure is 40 Ibę/in?. The area of the exit is 0.0085 ft². Use the ideal gas model with k = 1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in Ib/s.arrow_forward
- Liquid water flows isothermally at 20°C through a one-inlet, one-exit duct operating at steady state. The duct's inlet and exit P2 = 4.8 bar T = 320°C diameters are 0.02 m and 0.04 m, Water vapor (AV)2 = (AV)3 respectively. At the inlet, the velocity is 50 m/s and the pressure is 1 bar. At the exit, determine the mass flow rate, in kg/s, and V, T A1 = 0.2 m? P1 = 5 bar 3 velocity, in m/s. P3= 4.8 bar T3 = 320°Carrow_forwardpls answer correctly thanksarrow_forwarduse table Table Derive expressions for the heat absorbed by the system for each of the following classes of reversible processes for one mole of an idea gas: (a) Case 1: Isothermal change in pressure (b) Case 2: Isobaric change in volume Hint: Case 1 with S = S(T,P); Case 2 with S = S(P,V) (c) Case 3: Isochoric (constant volume) change in temperature dV=Va dT-VB AP dS=CT dT-Va dP dU= (Cp-PVα) dT + V(PB - Ta) dP dH=Cp dT +V(I-Ta) dP dF=-(S+PVa) dT + VPB dP dG=-S dT + V dParrow_forward
- solve the following problem: Steam enters a turbine operating at steady state at 850oF and 450 lbf/in2 and leaves as a saturated vapor at 1.4 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.arrow_forwardAir enters a nozzle operating at steady-state at 800°R, with a negligible velocity, and exits with a velocity of 1500 ft/s. Heat transfer occurs from the nozzle to the surroundings at a rate of 10 Btu per lbm of air flowing. Determine the temperature at the exit, °R. Assume: o air is an ideal gas, variable specific heats, and o potential energy effects are negligible.arrow_forwardAir enters a diffuser operating at steady state at 540°R, 15 Ilbf/in.?, with a velocity of 600 ft/s, and exits with a velocity of 60 ft/s. The ratio of the exit area to the inlet area is 6. Assuming the ideal gas model for the air and ignoring heat transfer, determine the temperature, in °R, and pressure, in Ibf/in.?, at the exit.arrow_forward
- Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s, respectively. At the exit, the temperature is 480°R and the pressure is 40 lbf/in². The area of the exit is 0.0085 ft². Use the ideal gas model with k = 1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s. Step 1 Determine the velocity at the exit, in ft/s. V₂ = i ft/sarrow_forwardSolve it fast and correctly please.arrow_forward6. 1.2kg Air undergoes polytropic expansion from P1=1.5 bar, V1=0.66584 m3, to P2=1 bar, V2=1.2054 m3. Calculate the amount of heat and work transfer if n=1.4.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY