
Draw the influence lines for (a) the moment at C, (b) the vertical reaction at A, and (c) the shear at C. Assume A is a fixed support. Solve this problem using the basic method of Sec. 6.1.

(a)
The influence lines for the moment at
Answer to Problem 6.1P
The influence line for the moment at
Explanation of Solution
Concept Used:
The unit load as
Calculation:
The following figure shows the free body diagram of the beam.
Figure-(1)
Write the equilibrium equation for the moment about point
Here, the net moment about the point
When the point load is at
Substitute,
When the point load is at
Substitute,
Conclusion:
According to the value of
Figure-(2)

(b)
The influence line for the vertical reaction at
Answer to Problem 6.1P
The influence line for the vertical reaction at
Explanation of Solution
Concept Used:
The unit load as
Calculation:
The following figure shows the free body diagram of the beam.
Figure-(3)
Write the equilibrium equation for the forces acting in the vertical direction.
Here, summation of the vertical forces is
Conclusion:
According to the value of the vertical reaction at
Figure-(4)

(c)
The influence line for the shear at
Answer to Problem 6.1P
The influence line for the shear at
Explanation of Solution
Concept Used:
The unit load as
Calculation:
Consider the right segment of the beam as shown in Figure-(5).
Figure-(5)
Write the equilibrium equation for the forces acting in the vertical direction.
Here, summation of the vertical forces is
Now, consider the left segment of the beam as shown in Figure-(6).
Figure-(6)
Write the equilibrium equation for the forces acting in the vertical direction.
Conclusion:
According to the values of
Figure-(7)
Want to see more full solutions like this?
Chapter 6 Solutions
Structural Analysis (10th Edition)
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Starting Out With Visual Basic (8th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Introduction To Programming Using Visual Basic (11th Edition)
- 6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forwardProblem 5 (A, B, C and D are fixed). Find the reactions at A and D 8 k B 15 ft A -20 ft C 10 ft Darrow_forwardProblem 4 (A, B, E, D and F are all pin connected and C is fixed) Find the reactions at A, D and F 8 m B 6m E 12 kN D F 4 marrow_forward
- Problem 1 (A, C and D are pins) Find the reactions and A, C and D. D 6 m B 12 kN/m 8 m A C 6 marrow_forwardUniform Grade of Pipe Station of Point A is 9+50.00. Elevation Point A = 250.75.Station of Point B is 13+75.00. Elevation Point B = 244.10 1) Calculate flowline of pipe elevations at every 50 ft. interval (Half Station). 2) Tabulate station and elevation for each station like shown on example 3) Draw Sketcharrow_forward40m 150N B 40marrow_forward
- Note: Please accurately answer it!. I'll give it a thumbs up or down based on the answer quality and precision. Question: What is the group name of Sample B in problem 3 from the image?. By also using the ASTM flow chart!. This unit is soil mechanics btwarrow_forwardPick the rural location of a project site in Victoria, and its catchment area-not bigger than 25 sqkm, and given the below information, determine the rainfall intensity for ARI = 5, 50, 100 year storm event. Show all the details of the procedure. Each student must propose different length of streams and elevations. Use fig below as a sample only. Pt. E-ht. 95.0 200m 600m PLD-M. 91.0 300m Pt. C-93.0 300m PL.B-ht. 92.0 PL.F-ht. 96.0 500m Pt. A-M. 91.00 To be deemed satisfactory the solution must include: Q.F1.1.Choice of catchment location Q.F1.2. A sketch displaying length of stream and elevation Q.F1.3. Catchment's IFD obtained from the Buro of Metheorology for specified ARI Q.F1.4.Calculation of the time of concentration-this must include a detailed determination of the equivalent slope. Q.F1.5.Use must be made of the Bransby-Williams method for the determination of the equivalent slope. Q.F1.6.The graphical display of the estimation of intensities for ARI 5,50, 100 must be shown.arrow_forwardQUANTITY SURVEYINGarrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning





