FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Calculate the amount of work necessary for the reversible compression of steam from 1 bar to 10 bar. The compression is to take place in a cylinder fitted with a weightless piston at the constant temperature of 500 oC. Under these conditions we have a superheated vapor. Assume that steam may be treated as an ideal gas.
Report your answer in units of kJ/kg using three decimal places. For conversion, note that the molar mass of water is 18.015 g/mol.
Identify the working substance, specify the kind of system and sketch the system boundary.
PLEASE ANSWER it in 1hr.
Water vapor undergoes the following processes: a. From a state at 200 kPa and 600 ° C it expands isothermally up to 100 kPa. B. Immediately isobarically compressed to 2 m3 / kg. C. From this last state it follows an isochoric process until reaching 600 ° C. Perform: a. Plotting the processes on the exact P-ν diagram. You must use the diagram P-ν
Knowledge Booster
Similar questions
- QUESTION II: An ideal gas having molecular weight of 16 undergoes a polytropic compression fr 101.3kPa, 20°C to a pressure of 600 kPa following the relation pV-constant. Take specific h at constant volume of gas as 1.192 kJ/kg.K and the work done is -250.8 kJ/kg, determine: (a) the final temperature in °C. (b) the heat transfer in kJ/kg.arrow_forwardThree-tenths kmol of carbon monoxide (CO) in a piston– cylinder assembly undergoes a process from p1 = 150 kPa, T1 = 300 K to p2 = 500 kPa, T2 = 420 K. For the process, W = -300 kJ.Employing the ideal gas model, determine:(a) the heat transfer, in kJ.(b) the change in entropy, in kJ/K.arrow_forwardFor water as a pure substance and using steam tables, determine the: P and u if t = 235 and h = 825.43 kJ/kg t and h if p = 1500 kPa and u = 1010 kJ/kg u and h if p = 800 kPa and t = 321 oCarrow_forward
- if possible please answer all questionsarrow_forwardA cylinder that contains 0.062 kg of carbon dioxide (with molar mass 44 kg/kmol), occupying a volume of 0.027 m3 at 1.1 bar is compressed reversibly until the pressure is 6.6 bar. If the molar (universal) gas constant as 8.3145 kJ/kmol K, calculate the the work done on the C02 (in J) when the process is isothermal.arrow_forwardIdentify the working substance, specify the kind of system and sketch the system boundary. Please answer it in 1hr.arrow_forward
- This is a Thermodynamics question. Please explain nicely. Considering variable specific heats, find the entropy change of a piston cylinder assembly containing airas an ideal gas and going through the following process: V1=1m3T1=27 C V2=1.7m3T2= 327 Carrow_forward3. Air is contained within a piston-cylinder assembly The cross sectional area of the piston is 0.01 m². Initially the piston is at 1 bar and 25°C, 10 cm above the base of the cylinder. In this state, the spring exerts no force on the piston. The system is then reversibly heated to 100°C. As the spring is compressed, it exerts a force on the piston according to: F=-kx where k= 50,000 N/m and x is the displacement length from its uncompressed position. Determine the work done. a. -166 J b. -216 J c. 166 J d. 216 Jarrow_forwardThere are 2.27 kg/min of steam undergoing an isothermal process from 3 Bar, 316o C to 7 Bar. Determine (a) ΔS, ΔU and Δ (b) Determine Q and W for a nonflow process, and (c) for steady flow process with ΔK = 0. Use and draw T-s diagram.arrow_forward
- Refrigerant 134a at p1 = 30 lbş/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 250 lb/h and exits as saturated vapor at p2 = 160 lbę/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 2.5 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr-°R.arrow_forwardRefrigerant 134a at p1 = 30 lbe/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 400 Ib/h and exits as saturated vapor at p2 = 160 Ib/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 4 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr.°R.arrow_forwardCan you show the step-by-step solution how to get the answers for this problem? There are 2.27 kg/min of steam undergoing an isothermal process from 27.6 bar, 320 °C to 6.9 bar. Sketch the pV diagram and Ts diagram and determine delta s, Q, delta H, Work nonflow, delta U, and delta Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY