FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Question 3:
Superheated steam enters a turbine at 7 MPa, 550°C, and exits at 150kPa
a. Draw the system.
b. If the process is reversible adiabatic (isentropic), find the final temperature (T2), the
final enthalpy (h2,) of the steam, and do the energy balance to calculate the turbine
work (Wts).
c. Using entropy balance, show that Sgen for the above process is 0.
d. If the isentropic efficiency is 85%, find the actual final temperature (T23)
and calculate Sgen?
e. Plot process in (b) and (d) on a Ts diagram with proper labelling.
40°C
4. A mixing chamber receives 5 kg/min of ammonia as saturated liquid at -20°C from one line (1) and ammonia
at 40°C, 250 kPa from another line (2). The chamber also receives 325 kJ/min of energy as heat transferred from
a 40°C reservoir as shown in figure. At the outlet, ammonia leaves as saturated vapor at -20°C. Find the mass flow
rate in second line and calculate the total entropy generation in the process. Is this process possible?
A condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Provide the solution and diagram. A 120 tons refrigeration system with COP of 5 has a condenser which is to be cooled by means of a cooling tower. Air enters the tower at 25 oC db and 50% RH and leaves at 35 oC db and 80% RH. Find the volume of air needed m3/hr. At 25oC and 50% RH: h = 50 KJ/kg, v = 0.86 m3/kg At 350C db and 80% RH: h = 108 A. 7.51 m3/s B. 2.34 m3/s C. 4.98 m3/s D. 3.16 m3/sarrow_forwardA pressure cooker 6 litres in volume contains 5 kg of water, where the liquid is in equilibrium with the vapour above it, at 30°C. The cooker with its lid closed and weight on, is heated until the vapour produced results in an increase in pressure, and the weight just lifts up at 2 bar. i. If the flame heating the cooker is at 400°C, calculate the entropy generation due to the external irreversibility. Calculate the heat transferred in the process. ii. Assume that the heating of water is reversible; neglect heating of the cooker body; assume heat transfer to water takes place at its average temperature for the above process. Use property data given below.arrow_forward9. An air compressor takes in air at 105 Pa and 27°C having volume of 1.5 m3/kg and compresses it to 4.5×105 Pa. Find the work done, heat transfer and change in internal energy if the compression is isothermal.arrow_forward
- A compressor has R-134a entering at 10°C, 100 kPa and exiting as a saturated vapor. It is given that this particular compressor also involves heat loss (i.e., this compressor, in a non-typical fashion, has a non- zero q; i.e., you cannot neglect q for this compressor). If the compressor operates in a reversible isothermal manner, find the specific heat transfer and specific work.arrow_forward4. Air at a temperature of 500 0C is compressed at a constant pressure of 1.2MPa from a volume of 2 m3 to a volume of 0.4m3 . If the initial internal energy decrease is 4820 KJ, find a. The work done during the reversible compression b. The heat transferred c. The change of enthalpy d. The average specific heat at constant pressurearrow_forwardA steam with a quality of 49%, enters an adiabatic nozzle at 3.5 MPa and leaves at 0.4 MPa and 140 oC with a flow of 7 m/s. Find the entrance velocity, in m/s.arrow_forward
- 2000 kg cast iron hoisin at 350 degree Celsius is quenched in 4000 kg of water at 15 degree Celsius. Find the amount of heat transferred to the water bath, entropy change for water and cast iron, use the entropy generation to prove that the entire system does not violate the second law of thermodynamics. Water specific heat of 4.18kj/kg.k, cast iron specific heat of 0.42kj/kg.karrow_forwardA pressure cooker 6 ltrarrow_forwardAn amount of 4000 BTU of heat is transferred from a reservoir at 800 deg. F to a reservoir at 200 deg. F. Find the entropy change of the system.arrow_forward
- 3. An adiabatic compressor takes argon from 100 kPa, 300 K to 2000 kPa. The compressor efficiency is 80%. (a) Find the outlet temperature (K) and the work (kJ/kg) (b) Find the entropy generation (kJ/kg-K)arrow_forwardAn adiabatic turbine has an efficiency of 90%. If air is compressed from 1100kpa and 227 degree Celsius to 101kpa. Find the work done and final temperature. Sketch process on T-S diagram.arrow_forward4. An evaporator has R-410A at -20°C and quality 80% flowing in. The exit flow is saturated vapor at -20°C. a. Consider the heating to be a reversible process and find the specific heat transfer from the entropy balance. (Answer: 48.7 kJ/kg) b. If the heat source was at -10°C and the inlet and outlet streams still have the same properties as in a), calculate the specific entropy generation? (Answer: 7.33 J/(kg K))arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY