Concept explainers
The Haber process is the principal method for fixing nitrogen °Converting N2 to nitrogen compounds).
Assume that the reactant gases are completely converted to NH2(g) and that the gases behave ideally.
a. What volume of NH2(g)can be produced from 152 L N2(g)and 313 L of H2(g) if the gases are measured at 315°C and 5.25 atm?
b. What volume of NH2(g)measured at 25 °C and 727 mmHg, can be produced from 152 L N2(g) 313 L H2(g), measured at 315 °C and 5.25 atm?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
Organic Chemistry (8th Edition)
Chemistry: Structure and Properties (2nd Edition)
Organic Chemistry
- Chlorine trifluoride, ClF3, is a valuable reagent because it can be used to convert metal oxides to metal fluorides: 6 NiO(s) + 4 ClF3(g) 6 NiF2(s) + 2 Cl2(g) + 3 O2(g) (a) What mass of NiO will react with ClF3 gas if the gas has a pressure of 250 mm Hg at 20 C in a 2.5-L flask? (b) If the ClF3 described in part (a) is completely consumed, what are the partial pressures of Cl2 and of O2 in the 2.5-L flask at 20 C (in mm Hg)? What is the total pressure in the flask?arrow_forwardHow does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardWhat volume (in liters) of O2, measured at standard temperature and pressure, is required to oxidize 0.400 mol of phosphorus (P4)? P4(s) + 5 O2(g) P4O10(s)arrow_forward
- When calcium carbonate is heated strongly, it evolves carbon dioxide gas. CaCO3(s)CaO(s)+CO2(g) 25 g of CaCO3 is heated, what mass of CO2would be produced? What volume would this quantity of CO2 (CU at STP?arrow_forwardIf an electric current is passed through molten sodium chloride, elemental chlorine gas is generated as the sodium chloride is decomposed. :math>2NaCl(1)2Na(s)+Cl2(g) at volume of chlorine gas measured at 767 mm Hg at 25 °C would be generated by complete decomposition of 1.25 g of NaCl?arrow_forward62 Ammonium dinitramide (ADN), NH4N(NO2)2, was considered as a possible replacement for aluminium chloride as the oxidizer in the solid fuel booster rockets used to launch the space shuttle. When detonated by a spark, AND rapidly decomposes to produce a gaseous mixture of N2,O2, and H2O. (This is not a combustion reaction. The ADN is the only reactant.) The reaction releases a lot of heat, so the gases are initially formed at high temperature and pressure. The thrust of the rocket results mainly from the expansion of this gas mixture. Suppose a 2.3-kg sample of ADN is denoted and decomposes completely to give N2,O2, and H2O. If the resulting gas mixture expands until it reaches a temperature of 100°C and a pressure of 1.00 atm, what volume will it occupy? Is your answer consistent with the proposed use of ADN as a rocket fuel?arrow_forward
- What possible uses exist for the natural gas liquids that are removed from natural gas during its processing?arrow_forwardCalcium oxide, CaO, is used to remove SO2 from power plant exhaust. These two compounds react to give solid CaSO3. What mass of SO2 can be removed using 1.2 103 kg of CaO?arrow_forwardIf 2.33 L of propane at 24°C and 67.2 kPa is completelyburned in excess oxygen, how many moles of carbondioxide will be produced?arrow_forward
- Assume that the radius of Earth is 6400 km, the crust is 50. km thick, the density of the crust is 3.5 g/cm3, and 25.7% of the crust is silicon by mass. Calculate the total mass of silicon in the crust of Earth.arrow_forwardA power plant is driven by the combustion of a complex fossil fuel having the formula C11H7S. Assume the air supply is composed of only N2 and O2 with a molar ratio of 3.76:1.00, and the N2 remains unreacted. In addition to the water produced, the fuels C is completely combusted to CO2 and its sulfur content is converted to SO2. In order to evaluate gases emitted at the exhaust stacks for environmental regulation purposes, the nitrogen supplied with the air must also be included in the balanced reactions. a Including the N2 supplied m the air, write a balanced combustion equation for the complex fuel assuming 100% stoichiometric combustion (i.e., when there is no excess oxygen in the products and the only C-containing product is CO2). Except in the case of N2, use only integer coefficients. b Including N2 supplied in the air, write a balanced combustion equation for the complex fuel assuming 120% stoichiometric combustion (i.e., when excess oxygen is present in the products and the only C-containing product is CO2). Except in the case of use only integer coefficients c Calculate the minimum mass (in kg) of air required to completely combust 1700 kg of C11H7S. d Calculate the air/fuel mass ratio, assuming 100% stoichiometric combustion. e Calculate the air/fuel mass ratio, assuming 120% stoichiometric combustion.arrow_forwardThe nitrogen content of organic compounds can be determined by the Dumas method. The compound in question is first reacted by passage over hot CuO(s): CompoundCuO(s)HotN2(g)+CO2(g)+H2O(g) The product gas is then passed through a concentrated solution of KOH to remove the CO2. After passage through the KOH solution, the gas contains N2 and is saturated with water vapor. In a given experiment a 0.253-g sample of a compound produced 31.8 mL N2 saturated with water vapor at 25C and 726 torr. What is the mass percent of nitrogen in the compound? (The vapor pressure of water at 25C is 23.8 torr.)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning