
Concept explainers
In Problems 1 and 2 answer true or false without referring back to the text.
1. The general solution of x2y″ + xy′ + (x2 − 1)y = 0 is y = c1J1(x) + c1J−1 (x) ________

Whether the given statement is true or false.
Answer to Problem 1RE
The given statement is
Explanation of Solution
Calculation:
Consider the Bessel’s equation of order 1,
Since
So, there exists at least one solution of the form
Substitute the equation (1) in above expression,
From above the identical equation is
The identical roots are
So,
Thus, the general solution of
Therefore, the given statement is
Want to see more full solutions like this?
Chapter 6 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
- Suppose we have a linear program in standard equation form maximize c'x subject to Ax=b, x≥ 0. and suppose u, v, and w are all optimal solutions to this linear program. (a) Prove that zu+v+w is an optimal solution. (b) If you try to adapt your proof from part (a) to prove that that u+v+w is an optimal solution, say exactly which part(s) of the proof go wrong. (c) If you try to adapt your proof from part (a) to prove that u+v-w is an optimal solution, say exactly which part(s) of the proof go wrong.arrow_forward(a) For the following linear programme, sketch the feasible region and the direction of the objective function. Use you sketch to find an optimal solution to the program. State the optimal solution and give the objective value for this solution. maximize +22 subject to 1 + 2x2 ≤ 4, 1 +3x2 ≤ 12, x1, x2 ≥0 (b) For the following linear programme, sketch the feasible region and the direction of the objective function. Explain, making reference to your sketch, why this linear programme is unbounded. maximize ₁+%2 subject to -2x1 + x2 ≤ 4, x1 - 2x2 ≤4, x1 + x2 ≥ 7, x1,x20 Give any feasible solution to the linear programme for which the objective value is 40 (you do not need to justify your answer).arrow_forwardfind the domain of the function f(x)arrow_forward
- For each of the following functions, find the Taylor Series about the indicated center and also determine the interval of convergence for the series. 1. f(x) = ex-2, c = 2 Π == 2. f(x) = sin(x), c = 2arrow_forwardQUESTION 5. Show that if 0 ≤r≤n, then r+2 r r (c) + (+³) + (+³) +- + (*) -(+) n n+ = r (1)...using induction on n. (2) ...using a combinatorial proof.arrow_forwardUse a power series to approximate each of the following to within 3 decimal places: 1. arctan 2. In (1.01)arrow_forward
- For each of the following power series, find the interval of convergence and the radius of convergence: n² 1.0 (x + 1)" n=1 շո 3n 2. Σ n=1 (x-3)n n3arrow_forwardUse a known series to find a power series in x that has the given function as its sum: 1. xcos(x³) 2. In (1+x) xarrow_forwardif n is odd integer then 4 does not divide narrow_forward
- or W Annuities L Question 2, 5.3.7 > Find the future value for the ordinary annuity with the given payment and interest rate. PMT = $2,000; 1.65% compounded quarterly for 11 years. The future value of the ordinary annuity is $ (Do not round until the final answer. Then round to the nearest cent as needed.) example Get more help Q Search 30 Larrow_forwardFind the cdf of a random variable Y whose pdf is given by; 2, 0≤x≤1 1/3, 0≤x≤1 a) f(x)=3, 2≤x≤4 0, elsewhere 2, 1≤x≤2 b) f(x)= (3-x)2, 2≤x≤3 0, elsewherearrow_forwardFor all integers a and b, a + b is not ≡ 0(mod n) if and only if a is not ≡ 0(mod n)a or is not b ≡ 0(mod n). Is conjecture true or false?why?arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





