Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book.
Determining the Length of a Keratin Molecule The central rod domain of a keratin protein is approximately 312 residues in length. What is the length (in A) of the keratin rod domain? If this same peptide segment were a true
To Determine: The length of the keratin rod domain should be determined along with the length of the peptide segment when the same peptide segment were a true a helix. Length of the segment should be determined when the same segment were a ß sheet.
Introduction: One turn of a helix represents
Beta sheet structure can be pictured as a twofold helix with two residues per turn. The distance between residues in the anti-parallel pleated sheet is
Explanation of Solution
The length of the keratin rod domain =
If the segment were a true helix =
If the segment were an antiparallel beta-sheet =
If the segment were a parallel beta-sheet =
Want to see more full solutions like this?
Chapter 6 Solutions
Biochemistry
- Compare the structure of the nucleoside triphosphate CTP with the structure of ATP. NH₂ 0- 0- 0- ·P—O—P—O—P—O—CH₂ H H H H OH OH Cytidine triphosphate (CTP) Consider the reaction: ATP + CDP ADP + CTP NH 0- 0- 0- ¯0— P—O— P—O—P-O-CH₂ H Η о H H OH OH Adenosine triphosphate (ATP) NH₂ Now predict the approximate K'eq for this reaction. Now predict the approximate AG for this reaction. Narrow_forwardThe standard free energy, AGO, of hydrolysis of inorganic polyphosphate, polyP, is about −20 kJ/mol for each P; released. In a cell, it takes about 50 kJ/mol of energy to synthesize ATP from ADP and Pi. ○ P O Inorganic polyphosphate (polyP) Is it feasible for a cell to use polyP to synthesize ATP from ADP? Why or why not? No. The reaction is unidirectional and always proceeds in the direction of polyP synthesis from ATP. Yes. If [ADP] and [polyP] are kept high, and [ATP] is kept low, the actual free-energy change would be negative. No. The synthesis of ATP from ADP and P; has a large positive G'o compared to polyP hydrolysis. Yes. The hydrolysis of polyP has a sufficiently negative AG to overcome the positive AGO of ATP synthesis. Correct Answerarrow_forwardIn the glycolytic pathway, a six-carbon sugar (fructose 1,6-bisphosphate) is cleaved to form two three-carbon sugars, which undergo further metabolism. In this pathway, an isomerization of glucose 6-phosphate to fructose 6-phosphate (as shown in the diagram) occurs two steps before the cleavage reaction. The intervening step is phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. H H | H-C-OH H-C-OH C=0 HO-C-H HO-C-H phosphohexose isomerase H-C-OH H-C-OH H-C-OH H-C-OH CH₂OPO CH₂OPO Glucose 6-phosphate Fructose 6-phosphate What does the isomerization step accomplish from a chemical perspective? Isomerization alters the molecular formula of the compound, allowing for subsequent phosphorylation. Isomerization moves the carbonyl group, setting up a cleavage between the central carbons. Isomerization causes the gain of electrons, allowing for the eventual release of NADH. Isomerization reactions cause the direct production of energy in the form of ATP.arrow_forward
- From data in the table, calculate the AG value for the reactions. Reaction AG' (kJ/mol) Phosphocreatine + H₂O →>> creatine + P -43.0 ADP + Pi → ATP + H₂O +30.5 Fructose +P → fructose 6-phosphate + H₂O +15.9 Phosphocreatine + ADP creatine + ATP AG'O ATP + fructose → ADP + fructose 6-phosphate AG'° kJ/mol kJ/molarrow_forwardMacmillan Learning The phosphorylation of glucose to glucose 6-phosphate is the initial step in the catabolism of glucose. The direct phosphorylation of glucose by P, is described by the equation Glucose + P ← glucose 6-phosphate + H₂O AG = 13.8 kJ/mol Coupling ATP hydrolysis to glucose phosphorylation makes thermodynamic sense, but consider how the coupling might take place. Given that coupling requires a common intermediate, one conceivable mechanism is to use ATP hydrolysis to raise the intracellular concentration of Pi. The increase in P; concentration would drive the unfavorable phosphorylation of glucose by Pi- Is increasing the P; concentration a reasonable way to couple ATP hydrolysis and glucose phosphorylation? No. The phosphate salts of divalent cations would be present in excess and precipitate out. Yes. Increasing the concentration of P; would decrease K'eq and shift equilibrium to the right. Yes. The extra ATP hydrolysis would provide enough free energy to drive the…arrow_forwardThe phosphorylation of glucose to glucose 6-phosphate is the initial step in the catabolism of glucose. The direct phosphorylation of glucose by P, is described by the equation Glucose + P → glucose 6-phosphate + H₂O AG' = 13.8 kJ/mol In principle, at least, one way to increase the concentration of glucose 6-phosphate (G6P) is to drive the equilibrium reaction to the right by increasing the intracellular concentrations of glucose and Pj. The maximum solubility of glucose is less than 1 M, and the normal physiological concentration of G6P is 250 μM. Assume a fixed concentration of P, at 4.8 mM. The calculated value of K'cq is 4.74 × 10-³ M-¹. Calculate the intracellular concentration of glucose when the equilibrium concentration of glucose 6-phosphate is 250 μM, the normal physiological concentration. [glucose] = 10.99 Correct Answer Would increasing the concentration of glucose be a physiologically reasonable way to increase the concentration of G6P? No. Because the concentration of P,…arrow_forward
- Calculate the equilibrium constant for the phosphorylation of glucose to glucose 6-phosphate at 37.0 °C. K'eq = M-' In the rat hepatocyte, the physiological concentrations of glucose and P, are maintained at approximately 4.8 mM. What is the equilibrium concentration of glucose 6-phosphate (G6P) obtained by the direct phosphorylation of glucose by P.? [G6P] = Does this reaction represent a reasonable metabolic step for the catabolism of glucose? Why or why not? Yes, because the value of AG" is positive. No, because the K'eq is too large for the reaction to proceed in the forward direction. Yes, because AG is negative at the calculated value of K'eq No, because [G6P] is likely to be higher than the calculated value. Marrow_forwardThe pKa values for glutamic acid are 2.19, 9.67, 4.25. Sketch out the titration curve for this amino acid and include all of the pKa values and the pl.arrow_forwardCalculate the isoelectronic point, pl, from the pKa values for histidine, arginine and asparagine.arrow_forward
- The free energy released by the hydrolysis of ATP under standard conditions is -30.5 kJ/mol. If ATP is hydrolyzed under standard conditions except at pH 5.0, is more or less free energy released? Why? More free energy is released because the increased [H+] stabilizes the negative charge on the ADP molecule. Less free energy is released because an acidic environment depletes cellular ATP levels. Less free energy is released because the reaction favors ATP production over hydrolysis due to the higher [H+] in solution. More free energy is released because the total cellular concentrations of ATP, ADP, and P; are greater at the lower pH. Correct Answerarrow_forwardConsider a system consisting of an egg in an incubator. The white and yolk of the egg contain proteins, carbohydrates, and lipids. If fertilized, the egg transforms from a single cell to a complex organism. How does the entropy change in both the system (developing chick) and suroundings (the egg environment) drive the irreversible process of chick development? ☐ The release of glucose from sucrose, which produces energy needed for chick development, decreases entropy in the surroundings. Chick development increases entropy in the system, which causes a concominant decrease in entropy in the surroundings. Carbohydrates, proteins, and lipids within the egg break down into CO2 and H2O, which increases entropy in the surroundings. Chick development decreases entropy in the system, but this is smaller than the concominant increase in entropy in the surroundings.arrow_forwardThe amino acid glycine is often used as the main ingredient of a buffer in biochemical experiments. The amino group of glycine, which has a pKa of 9.6, can exist either in the protonated form -NH or as the free base -NH2, because of the reversible equilibrium R-NH =R-NH₂ + H+ In what pH range can glycine be used as an effective buffer due to its amino group? pH 8.6 to pH 10.6 In a 0.1 M solution of glycine at pH 9.0, what fraction of glycine has its amino group in the -NH form? Correct Answer Correct Answer 45 How much 5 M KOH must be added to 1.0 L of 0.1 M glycine at pH 9.0 to bring its pH to 10.0? 10 mL When 99% of the glycine is in its -NH form, what is the numerical relation between the pH of the solution and the pKa of the amino group? pH = pKa - 2 Correct Answer Correct Answerarrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning