
Concept explainers
Association Suppose you were to collect data for each pair of variables. You want to make a
- a) Apples: weight in grams, weight in ounces
- b) Apples: circumference (inches), weight (ounces)
- c) College freshmen: shoe size, grade point average
- d) Gasoline: number of miles you drove since filling up, gallons remaining in your tank
a.

Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
Answer to Problem 1E
Either weight in grams or weight in ounces could be the explanatory or response variable.
The association between the variables is straight, positive and strong.
Explanation of Solution
Given info:
The variables of the apples are given one is weight in grams and the other is weight in ounces.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables weight in grams and weight in ounces are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are weight in grams of apple and weight in ounces of apple.
That is, each apple’s weight is measured in two different scales.
Therefore, there will be chances for weight in grams to depend on weight in ounces and vice versa.
Thus, either weight in grams or weight in ounces could be the explanatory or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are weight in grams of apple and weight in ounces of apple.
That is, each apple’s weight is measured in two different scales.
Therefore, there will be chances for weight in grams to depend on weight in ounces and vice versa.
Thus, either weight in grams or weight in ounces could be the explanatory or response variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, weight in ounces increases or decreases with the increase or decrease in the weight in grams.
The pattern of the relationship between weight in ounces and weight in grams represents a straight line.
Hence, the association between the weight in ounces and weight in grams is linear.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, weight in ounces increases or decreases with the increase or decrease in the weight in grams.
Hence, the direction of the association is positive.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have perfect correlation between them.
Hence, the association between the variables is strong.
b.

Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
Answer to Problem 1E
Circumference of apple is explanatory variable and weight is the response variable.
The association between the variables is straight, positive and strong.
Explanation of Solution
Given info:
The variables of the apples are given one is circumference in inches and the other is weight in ounces.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables circumference in inches and weight in ounces are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are circumference in inches of apple and weight in ounces of apple.
Three dimensional volume is nothing but the weight and one dimensional circumference explains the three dimensional volume.
Therefore, weight of the apple is predicted with the circumference of the apple.
That is, weight of the apple is depend on the circumference of the apple.
Thus, weight in ounces is dependent or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are circumference in inches of apple and weight in ounces of apple.
Weight of the apple is predicted with the circumference of the apple.
Thus, circumference in inches is independent or explanatory variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, weight in ounces increases or decreases with the increase or decrease in the circumference in inches of apple.
The pattern of the relationship between weight in ounces and circumference in inches of apple represents a straight line for same size apples.
Hence, the association between the weight in ounces and circumference in inches of apple is linear for same size apples.
The association curve will be apparent if the sample contains very large and very small apples.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, weight in ounces increases or decreases with the increase or decrease in the circumference in inches of apple.
Hence, the direction of the association is positive.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have perfect correlation between them.
Hence, the association between the variables is strong.
c.

Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
Answer to Problem 1E
The variables shoe size and grade point average are not associated with each other.
Explanation of Solution
Given info:
The variables of the college freshmen are given one is shoe size and the other is grade point average.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
There is no relationship between the variables shoe size and grade point average.
Therefore, there is no association between the variables.
Hence, the discussion will not go further.
d.

Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
Answer to Problem 1E
Circumference of apple is explanatory variable and weight is the response variable.
The association between the variables is straight, negative and strong.
Explanation of Solution
Given info:
The variables of the gasoline are given one is number of miles drove since filling up and the other is gallons remaining in the tank.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables number of miles drove since filling up and gallons remaining in the tank are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are number of miles drove since filling up and gallons remaining in the tank.
The fuel that is remained in the tank is dependent on the fuel that is used for driving.
Therefore, gallons remaining in the tank is predicted with the number of miles drove since filling up.
That is, gallons remaining in the tank is depend on the number of miles drove since filling up.
Thus, gallons remaining in the tank is dependent or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are number of miles drove since filling up and gallons remaining in the tank.
Gallons remaining in the tank is predicted with the number of miles drove since filling up.
Thus, the number of miles drove since filling up is independent or explanatory variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, gallons remaining in the tank decreases with the increase in the number of miles drove since filling up.
The pattern of the relationship between gallons remaining in the tank and the number of miles drove since filling up represents a straight line.
Hence, the association between the gallons remaining in the tank and the number of miles drove since filling up is linear.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, gallons remaining in the tank decreases with the increase in the number of miles drove since filling up and gallons remaining in the tank increases with the decrease in the number of miles drove since filling up.
Hence, the direction of the association is negative.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have moderate correlation between them.
Hence, the association between the variables is moderate.
Want to see more full solutions like this?
Chapter 6 Solutions
Intro Stats, Books a la Carte Edition (5th Edition)
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Pathways To Math Literacy (looseleaf)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Elementary Statistics: Picturing the World (7th Edition)
College Algebra (Collegiate Math)
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
- ian income of $50,000. erty rate of 13. Using data from 50 workers, a researcher estimates Wage = Bo+B,Education + B₂Experience + B3Age+e, where Wage is the hourly wage rate and Education, Experience, and Age are the years of higher education, the years of experience, and the age of the worker, respectively. A portion of the regression results is shown in the following table. ni ogolloo bash 1 Standard Coefficients error t stat p-value Intercept 7.87 4.09 1.93 0.0603 Education 1.44 0.34 4.24 0.0001 Experience 0.45 0.14 3.16 0.0028 Age -0.01 0.08 -0.14 0.8920 a. Interpret the estimated coefficients for Education and Experience. b. Predict the hourly wage rate for a 30-year-old worker with four years of higher education and three years of experience.arrow_forward1. If a firm spends more on advertising, is it likely to increase sales? Data on annual sales (in $100,000s) and advertising expenditures (in $10,000s) were collected for 20 firms in order to estimate the model Sales = Po + B₁Advertising + ε. A portion of the regression results is shown in the accompanying table. Intercept Advertising Standard Coefficients Error t Stat p-value -7.42 1.46 -5.09 7.66E-05 0.42 0.05 8.70 7.26E-08 a. Interpret the estimated slope coefficient. b. What is the sample regression equation? C. Predict the sales for a firm that spends $500,000 annually on advertising.arrow_forwardCan you help me solve problem 38 with steps im stuck.arrow_forward
- How do the samples hold up to the efficiency test? What percentages of the samples pass or fail the test? What would be the likelihood of having the following specific number of efficiency test failures in the next 300 processors tested? 1 failures, 5 failures, 10 failures and 20 failures.arrow_forwardThe battery temperatures are a major concern for us. Can you analyze and describe the sample data? What are the average and median temperatures? How much variability is there in the temperatures? Is there anything that stands out? Our engineers’ assumption is that the temperature data is normally distributed. If that is the case, what would be the likelihood that the Safety Zone temperature will exceed 5.15 degrees? What is the probability that the Safety Zone temperature will be less than 4.65 degrees? What is the actual percentage of samples that exceed 5.25 degrees or are less than 4.75 degrees? Is the manufacturing process producing units with stable Safety Zone temperatures? Can you check if there are any apparent changes in the temperature pattern? Are there any outliers? A closer look at the Z-scores should help you in this regard.arrow_forwardNeed help pleasearrow_forward
- Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 4. One-Way ANOVA: Analyze the customer satisfaction scores across four different product categories to determine if there is a significant difference in means. (Hints: The null can be about maintaining status-quo or no difference among groups) H0 = H1=arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points 2. Two-Sample T-Test: Compare the average sales revenue of two different regions to determine if there is a significant difference. (Hints: The null can be about maintaining status-quo or no difference among groups; if alternative hypothesis is non-directional use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null) H0 = H1=arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points 3. Paired T-Test: A company implemented a training program to improve employee performance. To evaluate the effectiveness of the program, the company recorded the test scores of 25 employees before and after the training. Determine if the training program is effective in terms of scores of participants before and after the training. (Hints: The null can be about maintaining status-quo or no difference among groups; if alternative hypothesis is non-directional, use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting the null) H0 = H1= Conclusion:arrow_forward
- Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. The data for the following questions is provided in Microsoft Excel file on 4 separate sheets. Please conduct these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to…arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null. If alternative is directional (e.g., μ < 75), you should use the lower-tailed p-value. For alternative hypothesis μ > 75, you should use the upper-tailed p-value.) H0 = H1= Conclusion: The p value from one sample t-test is _______. Since the two-tailed p-value is _______ 2. Two-Sample T-Test:…arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. What is one sample T-test? Give an example of business application of this test? What is Two-Sample T-Test. Give an example of business application of this test? .What is paired T-test. Give an example of business application of this test? What is one way ANOVA test. Give an example of business application of this test? 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not…arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning





