
Probability And Statistical Inference (10th Edition)
10th Edition
ISBN: 9780135189399
Author: Robert V. Hogg, Elliot Tanis, Dale Zimmerman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.9, Problem 1E
Let Y be the number of defectives in a box of 50 articles taken from the output of a machine. Each article is defective with
(a) By using the binomial distribution.
(b) By using the Poisson approximation.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
pls help asap. show in the diagram by filling it out
pls help asap
Problem 3
Ten measurements of an impurity concentration in a process stream have been
recorded. The sample mean is 87ppm and the sample standard deviation is ±13 ppm.
Consider the null hypothesis that the impurity concentration has a true mean μo.
Part A: Desired Probability that the sample mean will satisfy the null hypothesis:
P = 0.4
Part B: Using the chart below, determine the4 highest value of the true mean that will lead
to the null hypothesis being accepted with the probability assigned in Part A
1.00
0.90
0.80
0.70
0.60
0.50
0.40
Probability of accepting Ho
0.30
0.20
0.10
1
°
0
30
40
50
75
100
10
0.2 0.4 0.6 0.8 1.0 1.2
=2.5
1.4
1.6 1.8 2.0
2.2
2.4
2.6
d
2.8
3.0
3.2
Chapter 5 Solutions
Probability And Statistical Inference (10th Edition)
Ch. 5.1 - Let X have a geometric distribution with parameter...Ch. 5.1 - Suppose that X is a continuous random variable...Ch. 5.1 - Prob. 3ECh. 5.1 - Prob. 4ECh. 5.1 - Let X have a gamma distribution with =3 and =2....Ch. 5.1 - The pdf of X is f(x)=2x,0x1. (a) Find the cdf of...Ch. 5.1 - Prob. 7ECh. 5.1 - Let X have a logistic distribution with pdf...Ch. 5.1 - A sum of $50000 is invested at a rate R, selected...Ch. 5.1 - The lifetime (in years) of a manufactured product...
Ch. 5.1 - Statisticians frequently use the extreme extreme...Ch. 5.1 - Prob. 12ECh. 5.1 - Let X have a Cauchy distribution. Find (a) P(X1)....Ch. 5.1 - Let f(x)=1[(1+x2)],x, be the pdf of the Cauchy...Ch. 5.1 - If X is N(,2), then M(t)=E(etX)=exp(t+2t22),t. We...Ch. 5.1 - Prob. 16ECh. 5.1 - Prob. 17ECh. 5.1 - (a) Let X be a continuous random variable with...Ch. 5.2 - Let X1,X2, denote two independent random...Ch. 5.2 - Let X1 and X2 be independent chi-square random...Ch. 5.2 - Prob. 3ECh. 5.2 - Let the distribution of W be F(9, 24). Find the...Ch. 5.2 - Let the distribution of W be F(8. 4). Find the...Ch. 5.2 - Let X1 and X2 have independent gamma distributions...Ch. 5.2 - Let X1 and X2 be independent chi-square random...Ch. 5.2 - Let X have a beta distribution with parameters ...Ch. 5.2 - Determine the constant c such that...Ch. 5.2 - When and are integers and0p1, we have...Ch. 5.2 - Evaluate 00.4(7)(4)(3)y3(1y)2dy (a) Using...Ch. 5.2 - Let W1,W2 be independent, each with a Cauchy...Ch. 5.2 - Let X1, X2 be independent random variables...Ch. 5.2 - Prob. 14ECh. 5.2 - In Example 5.2-6, verify that the given...Ch. 5.2 - Show that if W has an F(r1,r2) distribution, then...Ch. 5.2 - Let W have an F distribution with parameters r1...Ch. 5.3 - Let X1 and X2 be independent Poisson random...Ch. 5.3 - Let X1 and X2 be independent random variables with...Ch. 5.3 - Let X1 and X2 be independent random variables with...Ch. 5.3 - Let X1 and X2 be a random sample of size n=2 from...Ch. 5.3 - Let X1 and X2 be observations of a random sample...Ch. 5.3 - Let X1 and X2 be a random sample of size n=2 from...Ch. 5.3 - The distributions of incomes in two Cities follow...Ch. 5.3 - Prob. 8ECh. 5.3 - Let X1,X2,...Xn be a random sample (of size n)...Ch. 5.3 - Let X1,X2,X3 denote a random sample of size n= 3...Ch. 5.3 - Let X1,X2,X3 be three independent random variables...Ch. 5.3 - Let X1,X2,X3 be a random sample of size n=3 from...Ch. 5.3 - Prob. 13ECh. 5.3 - Let X1,X2,X3 be independent random variables that...Ch. 5.3 - In considering medical insurance for a certain...Ch. 5.3 - The lifetime in months of a certain part has a...Ch. 5.3 - Two components operate in parallel in a device, so...Ch. 5.3 - Prob. 18ECh. 5.3 - Flip n=8 fair coins and remove all that came up...Ch. 5.3 - Prob. 20ECh. 5.4 - Let X1+X2+X3 be a random sample of size 3 from the...Ch. 5.4 - Let X1 and X2 have independent distributions...Ch. 5.4 - Prob. 3ECh. 5.4 - Generalize Exercise 5.4-3 by showing that the sum...Ch. 5.4 - Let Z1,Z2,....,Z7 be a random sample from the...Ch. 5.4 - Let X1,X2,X3,X4,X5 be a random sample of size 5...Ch. 5.4 - Let X1,X2,X3 denote a random sample of size 3 from...Ch. 5.4 - Let W=X1+X2+...+Xh, a sum of h mutually...Ch. 5.4 - Let X and Y, with respective pmfs f(x) and g(y),...Ch. 5.4 - Let X equal the outcome when a fair four-sided die...Ch. 5.4 - Let X and Y equal the outcomes when two fair...Ch. 5.4 - Let X and Y be the outcomes when a pair of fair...Ch. 5.4 - Let X1,X2,...,X8 be a random sample from a...Ch. 5.4 - The number of accidents in a period of one week...Ch. 5.4 - Given a fair four-sided die, let Y equal the...Ch. 5.4 - The number X of sick days taken during a year by...Ch. 5.4 - In a study concerning a new treatment of a certain...Ch. 5.4 - The number of cracks on a highway averages 0.5 per...Ch. 5.4 - A doorman at a hotel is trying to get three taxic...Ch. 5.4 - The time X in minutes of a visit to a...Ch. 5.4 - Let X and Y be independent with distributions...Ch. 5.4 - Let X1 and X2 be two independent random variables....Ch. 5.4 - Let X be N(0,1). Use the mgf technique to show...Ch. 5.4 - Let X1,X2,X3,X4 be a random sample from a x2(r)...Ch. 5.5 - Let X1,X2...,X16, be a random sample from a normal...Ch. 5.5 - Let X be N(50,36). Using the same set of axes,...Ch. 5.5 - Let X equal the widest diameter (in millimeters)...Ch. 5.5 - Let X equal the weight of the soap in a 6-pound...Ch. 5.5 - Let X equal the weight (in grams) of a nail of the...Ch. 5.5 - Let X1,X2,...,X100 be a random sample from N(,4),...Ch. 5.5 - Suppose that the distribution of the weight of a...Ch. 5.5 - Let X denote the wing length in millimeters of a...Ch. 5.5 - Suppose that the length of life in hours (say, X)...Ch. 5.5 - A consumer buys n light bulbs, each of which has a...Ch. 5.5 - A marketing research firm suggests to a comp any...Ch. 5.5 - Let the independent random variables X1 and X2 be...Ch. 5.5 - Prob. 13ECh. 5.5 - Let T have at distribution with r degrees of freed...Ch. 5.5 - Let the distribution of T be t(17). Find (a)...Ch. 5.5 - Prob. 16ECh. 5.6 - Let X be the mean of a random sample of size 12...Ch. 5.6 - Let Y=X1+X2+....+X15 be the sum of a random sample...Ch. 5.6 - Let X be the mean of a random sample of size 36...Ch. 5.6 - Approximate P(39.75X41.25), where X is the mean of...Ch. 5.6 - Let X1,X2,...,X18 be a random sample of size 18...Ch. 5.6 - A random sample of size ii = 18 is taken from the...Ch. 5.6 - Let X equal the maximal oxygen intake of a human...Ch. 5.6 - Let X equal the weight in grams of a miniature...Ch. 5.6 - In Example 5.6-4, with n=4, compute P(1.73.2) and...Ch. 5.6 - Prob. 10ECh. 5.6 - The tensile strength X of paper, in pounds per...Ch. 5.6 - At certain times during the year, a bus company...Ch. 5.6 - Prob. 13ECh. 5.6 - Suppose that the sick leave taken by the typical...Ch. 5.7 - Let the distribution of Y be b(25,1/2). Find the...Ch. 5.7 - Suppose that among gifted seventh-graders who...Ch. 5.7 - A public opinion poll in Southern California was...Ch. 5.7 - Let X equal the number out of n=48 mature aster...Ch. 5.7 - Let X1,X2,...,X48 be a random sample of size 48...Ch. 5.7 - In adults, the pneumococcus bacterium causes 70%...Ch. 5.7 - Let X equal the number of alpha particles emitted...Ch. 5.7 - A candy maker produces mints that have a label...Ch. 5.7 - Let X1,X2,...,X30 be a random sample of size 30...Ch. 5.7 - Prob. 10ECh. 5.7 - On January 1 of a given year, a college basketball...Ch. 5.7 - If X is b(100,0.1), find the approximate value of...Ch. 5.7 - Let X1,X2,...,X36 be a random sample of size 36...Ch. 5.7 - A die is rolled 24 independent times. Let V be the...Ch. 5.7 - In the United States, the probability that a child...Ch. 5.7 - Let X equal the sum of n=100 Bernoulli trials....Ch. 5.7 - The number of trees in one acre has a Poisson...Ch. 5.7 - Assume that the background noise X of a digital...Ch. 5.7 - A company has a one-year group life policy that...Ch. 5.8 - If X is a random variable with mean 33 and...Ch. 5.8 - If E(X)=17 and E(X2)=298, use Chebyshevs...Ch. 5.8 - Let X denote the outcome when a fair die is...Ch. 5.8 - If Y is b(n,0.5), give a lower bound for...Ch. 5.8 - If the distribution of Y is b(n,0.25), give a...Ch. 5.8 - Let X be the mean of a random sample of size n=15...Ch. 5.8 - Suppose that W is a continuous random variable...Ch. 5.9 - Let Y be the number of defectives in a box of 50...Ch. 5.9 - The probability that a certain type of inoculation...Ch. 5.9 - Let S2 be the sample variance of a random sample...Ch. 5.9 - Let Y be x2(n). Use the central limit theorem to...Ch. 5.9 - Let Y have a Poisson distribution with mean 3n....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Problem 2 A chemical reactor system has been designed to perform optimally when operated at 150°C. The hypothesis test that will be used for evaluating the operating temperature will rely on 10 successive temperature measurements and will assign a 95% confidence interval for the result. The reactor system is judged to have a standard deviation of ±3°C. Part A: Actual operating temperature of the process T[°C] = 152.90 Part B: What is the probability that the hypothesis test for operating at 150°C described above will give a false acceptance (i.e., a type II error)?arrow_forwardProblem 1 An airport is served with an average of 10 departures per day to your desired destination. However, all these flights leave at random times. You are trying to decide how long you are willing to wait to catch the next flight after you arrive at airport. Part A: Acceptable waiting time: T [min] = 78min Part B: What is the probability there will be exactly one departure during this waiting time? Part C: What is the probability there will be exactly no departure during this waiting time? Part D: Which calculation (B or C) should you use to make your decision to wait or leave? Why?arrow_forwardProblem 5 Consider the hospital admissions table presented in the lecture: 刊 Outcome LWBS Admitted Hospital 1 195 Hospital 2 270 Hospital 3 246 Hospital 4 242 1277 1558 1350 984 Not Admitted 3820 5163 4728 3103 Part A: What is the conditional probability that you were admitted if you went to hospital 3? Part B: What is the conditional probability that you went to hospital 3 if you were admitted?arrow_forward
- Use NR method for one variable to find v 1 G2=1 if diode current is (e40v2 - 1) use V₂(0)=0.1 volt. 1 A GI=2arrow_forwardSuppose that a coin is tossed twice so that the sample space is S= {HH, HT, TH, TT}. Let X represent the number of heads that can come up. With each sample point we can associate a number for X as shown in Table. Thus, for example, in the case of HH (i.e., 2 heads), X =2 while for TH (1 head), X = 1. It follows that X is a random variable.arrow_forward-x² The normal distribution has p(x) = e 2 determine the CDF in terms Erf, mean and standard deviation.arrow_forward
- Find the probability in tossing a fair coin four times, there will appear a) 3H and 1T b) 2T and 2H using binomial distribution and assume coin has p(H)=1/3.arrow_forwardThe joint pdf of random variables X=1, 2 and Y=1, 2, 3 is P(X,Y)= X 10.05 Find (a) The value of k. (c) P(X>1, Y <2). Y 0.2 0.18 0.15] (b) the marginal probability function of X and Y. (d) Ex, Hyarrow_forwardThe conditional probability function for the random variables X and Y is 0 P(Y/X) = x0 [0.9 10.1 y 1 2 0.1 0 0.8 0.1 2 0 0.1 0.9. With P(x=0)=0.2, P(x-1)=0.4. Find P(X,Y), Hx, My, E(XY), OXY.arrow_forward
- If X is a continuous random variable having pdf as shown. Find 1. The constant k. 2. P(X>0). 3. X, X2,0%. k p(x) 4 k/2 X -3 -1 0 1 2arrow_forwardGiven a normally distributed variable X with mean 10 and standard deviation 4, find: 1. P(X5).arrow_forwardI need some assistance solving Part B of this question. Refer to the excel data in the image provided to answer Part B. SoftBus Company sells PC equipment and customized software to small companies to help them manage their day-to-day business activities. Although SoftBus spends time with all customers to understand their needs, the customers are eventually on their own to use the equipment and software intelligently. To understand its customers better, SoftBus recently sent questionnaires to a large number of prospective customers. Key personnel—those who would be using the software—were asked to fill out the questionnaire. SoftBus received 82 usable responses, as shown in the file. You can assume that these employees represent a random sample of all of SoftBus's prospective customers. SoftBus believes it can afford to spend much less time with customers who own PCs and score at least 4 on PC Knowledge. Let's call these the "PC-savvy" customers. On the other hand, SoftBus believes it…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning


Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License