EBK ELEMENTS OF MODERN ALGEBRA
8th Edition
ISBN: 9780100475755
Author: Gilbert
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.2, Problem 22E
Prove that if
[Type here][Type here]
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5. Consider the following vectors
0.1
3.2
-0-0-0
=
5.4
6.0
=
z= 3
0.1
For each of exercises a-e, either compute the desired quantity by hand with work shown
or explain why the desired quantity is not defined.
(a)
10x
(b)
10-27
(c)
J+Z
(d)
(x, y)
(e)
(x, z)
Consider the graph/network plotted below.
1
6
5
3
Explicitly give (i.e., write down all of the entries) the adjacency matrix A of the graph.
. Given the function f: XY (with X and Y as above) defined as
f(2) = 2, f(4) = 1,
ƒ(6)=3, ƒ(8) = 2,
answer the following questions. Justify your answers.
(a) [4 points] Is f injective?
(b) [4 points] Is f surjective?
(c) [2 points] Is f bijective?
Chapter 5 Solutions
EBK ELEMENTS OF MODERN ALGEBRA
Ch. 5.1 - True or False
Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False
Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False
Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...
Ch. 5.1 - Exercises
Confirm the statements made in Example...Ch. 5.1 - Exercises
2. Decide whether each of the following...Ch. 5.1 - Exercises
3. Let Using addition and...Ch. 5.1 - Prob. 4ECh. 5.1 - Exercises
5. Let Define addition and...Ch. 5.1 - Exercises Work exercise 5 using U=a. Exercise5 Let...Ch. 5.1 - Exercises Find all zero divisors in n for the...Ch. 5.1 - Exercises
8. For the given values of , find all...Ch. 5.1 - Exercises Prove Theorem 5.3:A subset S of the ring...Ch. 5.1 - Exercises
10. Prove Theorem 5.4:A subset of the...Ch. 5.1 - Assume R is a ring with unity e. Prove Theorem...Ch. 5.1 - 12. (See Example 4.) Prove the right distributive...Ch. 5.1 - 13. Complete the proof of Theorem by showing that...Ch. 5.1 - Let R be a ring, and let x,y, and z be arbitrary...Ch. 5.1 - 15. Let and be elements of a ring. Prove that...Ch. 5.1 - 16. Suppose that is an abelian group with respect...Ch. 5.1 - If R1 and R2 are subrings of the ring R, prove...Ch. 5.1 - 18. Find subrings and of such that is not a...Ch. 5.1 - 19. Find a specific example of two elements and ...Ch. 5.1 - Prob. 20ECh. 5.1 - 21. Define a new operation of addition in by ...Ch. 5.1 - 22. Define a new operation of addition in by and...Ch. 5.1 - Let R be a ring with unity and S be the set of all...Ch. 5.1 - Prove that if a is a unit in a ring R with unity,...Ch. 5.1 - Prob. 25ECh. 5.1 - Prob. 26ECh. 5.1 - Suppose that a,b, and c are elements of a ring R...Ch. 5.1 - Prob. 28ECh. 5.1 - 29. For a fixed element of a ring , prove that...Ch. 5.1 - Prob. 30ECh. 5.1 - Let R be a ring. Prove that the set S={...Ch. 5.1 - 32. Consider the set .
a. Construct...Ch. 5.1 - Consider the set S={ [ 0 ],[ 2 ],[ 4 ],[ 6 ],[ 8...Ch. 5.1 - The addition table and part of the multiplication...Ch. 5.1 - 35. The addition table and part of the...Ch. 5.1 - Prob. 36ECh. 5.1 - 37. Let and be elements in a ring. If is a zero...Ch. 5.1 - An element x in a ring is called idempotent if...Ch. 5.1 - 39. (See Exercise 38.) Show that the set of all...Ch. 5.1 - 40. Let be idempotent in a ring with unity....Ch. 5.1 - 41. Decide whether each of the following sets is...Ch. 5.1 - 42. Let .
a. Show that is a...Ch. 5.1 - 43. Let .
a. Show that is a...Ch. 5.1 - 44. Consider the set of all matrices of the...Ch. 5.1 - Prob. 45ECh. 5.1 - 46. Let be a set of elements containing the unity,...Ch. 5.1 - Prob. 47ECh. 5.1 - Prob. 48ECh. 5.1 - An element a of a ring R is called nilpotent if...Ch. 5.1 - 50. Let and be nilpotent elements that satisfy...Ch. 5.1 - Let R and S be arbitrary rings. In the Cartesian...Ch. 5.1 - 52. (See Exercise 51.)
a. Write out the...Ch. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.1 - Suppose R is a ring in which all elements x are...Ch. 5.2 - True or False
Label each of the following...Ch. 5.2 - [Type here]
True or False
Label each of the...Ch. 5.2 - [Type here]
True or False
Label each of the...Ch. 5.2 - Label each of the following as either true or...Ch. 5.2 - Confirm the statements made in Example 3 by...Ch. 5.2 - Consider the set ={[0],[2],[4],[6],[8]}10, with...Ch. 5.2 - Consider the set...Ch. 5.2 - [Type here]
Examples 5 and 6 of Section 5.1 showed...Ch. 5.2 - Examples 5 and 6 of Section 5.1 showed that P(U)...Ch. 5.2 - [Type here]
Examples 5 and 6 of Section 5.1 showed...Ch. 5.2 - [Type here]
7. Let be the set of all ordered pairs...Ch. 5.2 - Let S be the set of all 2X2 matrices of the form...Ch. 5.2 - Work exercise 8 using be the set of all matrices...Ch. 5.2 - Work exercise 8 using S be the set of all matrices...Ch. 5.2 - Let R be the set of all matrices of the form...Ch. 5.2 - Prob. 12ECh. 5.2 - 13. Work Exercise 12 using , the Gaussian integers...Ch. 5.2 - 14. Letbe a commutative ring with unity in which...Ch. 5.2 - [Type here]
15. Give an example of an infinite...Ch. 5.2 - Prove that if a subring R of an integral domain D...Ch. 5.2 - If e is the unity in an integral domain D, prove...Ch. 5.2 - [Type here]
18. Prove that only idempotent...Ch. 5.2 - a. Give an example where a and b are not zero...Ch. 5.2 - 20. Find the multiplicative inverse of the given...Ch. 5.2 - [Type here]
21. Prove that ifand are integral...Ch. 5.2 - Prove that if R and S are fields, then the direct...Ch. 5.2 - [Type here]
23. Let be a Boolean ring with unity....Ch. 5.2 - If a0 in a field F, prove that for every bF the...Ch. 5.2 - Suppose S is a subset of an field F that contains...Ch. 5.3 - True or False Label each of the following...Ch. 5.3 - Prob. 2TFECh. 5.3 - Prob. 3TFECh. 5.3 - Prob. 4TFECh. 5.3 - Prob. 5TFECh. 5.3 - Prove that the multiplication defined 5.24 is a...Ch. 5.3 - Prove that addition is associative in Q.Ch. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - 7. Prove that on a given set of rings, the...Ch. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Since this section presents a method for...Ch. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - 14. Let be the set of all real numbers of the...Ch. 5.3 - Prob. 15ECh. 5.3 - Prove that any field that contains an intergral...Ch. 5.3 - Prob. 17ECh. 5.3 - 18. Let be the smallest subring of the field of...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False
Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - Prob. 5TFECh. 5.4 - Complete the proof of Theorem 5.30 by providing...Ch. 5.4 - 2. Prove the following statements for arbitrary...Ch. 5.4 - Prove the following statements for arbitrary...Ch. 5.4 - Suppose a and b have multiplicative inverses in an...Ch. 5.4 - 5. Prove that the equation has no solution in an...Ch. 5.4 - 6. Prove that if is any element of an ordered...Ch. 5.4 - For an element x of an ordered integral domain D,...Ch. 5.4 - If x and y are elements of an ordered integral...Ch. 5.4 - 9. If denotes the unity element in an integral...Ch. 5.4 - 10. An ordered field is an ordered integral domain...Ch. 5.4 - 11. (See Exercise 10.) According to Definition...Ch. 5.4 - 12. (See Exercise 10 and 11.) If each is...Ch. 5.4 - 13. Prove that if and are rational numbers such...Ch. 5.4 - 14. a. If is an ordered integral domain, prove...Ch. 5.4 - 15. (See Exercise .) If and with and in ,...Ch. 5.4 - If x and y are positive rational numbers, prove...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 1. Let 15 -14 A = -10 9 13-12 -8 7 11 15 -14 13 -12 -6 and B = -10 9 -8 7 -6 5 -4 3 -2 E 5 -4 3 -2 1 Explicitly give the values of A2,3, A1,5, and B1,4- Is A a 5 x 3 matrix? Explain your answer. Are A and B (mathematically) equal? Explain your answer.arrow_forwardGiven the following set X = {2, 4, 6, 8} and Y = {1, 2, 3}, explicitly give (e.g., write down the sets with numerical entries) of the outputs of the following requested set operations: (a) [2 points] XUY (Union) (b) [2 points] XY (Intersection) (c) [3 points] X\Y (Difference) (d) [3 points] XAY (Symmetric Difference)arrow_forwardFor what values of k will the equation (k + 1)x² + 6kx + 2k² - x = 0 have: a) one root equal zero b) one root the reciprocal of the other c) roots numerically equal but of opposite signarrow_forward
- 1) Find The inverse The domain of m(x) = tion and of the function The inverse function 3- √x-aarrow_forwardGraph the following function. Please also graph the asymptote. Thank you.arrow_forwardFile Edit View History Bookmarks Profiles Tab Window Window Help Things Quadratics! Part 1 X SM◄))) 61% Fri 25 student.desmos.com/activitybuilder/instance/67b739e7356cae7898fd0dbd/student/67b8f115811d42186c239e23#screenid=41a95 ngs Quadratics! Part 1: Parabolas Mitchell 30 30 foo feet 20- 20 10 0 -10 FEB 21 3 10 10 80 FS F3 X Intercepts #2 20 20 Approximately how tall is the shooter? > Which intercept did you use to solve the above problem? x-intercept y-intercept 30 feet Explain your thinking. 1 √E Submit 00000 acBook stv 399 ? DOD 000 F4 % 5 W E R F5 A F6 F7 F9 & * 7 8 9 0 Y U C 014arrow_forward
- The table below shows the acreage, number of visitors, and total revenue of state parks and recreational areas in Massachusetts, New York, and Vermont in 2010. State Acreage (in thousands) Visitors (in thousands) Revenue (in thousands) Massachusetts 350 35,271 $12,644 New York 1,354 56,322 $85,558 Vermont 69 758 $10,969 Select the three true statements based on the data in the table. A. Vermont had the highest revenue per acre of state parks and recreational areas. B. Vermont had approximately 11 visitors per acre of state parks and recreational areas. C. New York had the highest number of visitors per acre of state parks and recreational areas. D. Massachusetts had approximately 36 visitors per acre of state parks and recreational areas. E. New York had revenue of approximately $63.19 per acre of state parks and recreational areas. F. Massachusetts had revenue of approximately $0.03 per acre of state parks and recreational areas.arrow_forwarda) show that the empty set and sigletonset are convex set. 6) show that every sub space of linear space X is convex but the convers heed not be true. c) let Mand N be two convex set of a linear Space X and KEF Show that MUN is conevex and (ii) M-N is convex or hot A and is MSN or NSM show that MUN convex or not, 385arrow_forwardI write with prove one-to-one linear Sanction but not onto Lexample.) b) write with Prove on to linear function but not oh-to-on (example). c) write with prove example x=y St Xandy two linear space over Sielad F.arrow_forward
- Find the sample space. Sunscreen SPF 10, 15, 30, 45, 50 Type Lotion, Spray, Gelarrow_forwardFor each graph below, state whether it represents a function. Graph 1 24y Graph 2 Graph 3 4 2 -8 -6 -4 -2 -2 2 4 6 Function? ○ Yes ○ No ○ Yes ○ No Graph 4 Graph 5 8 Function? Yes No Yes No -2. ○ Yes ○ No Graph 6 4 + 2 4 -8 -6 -4 -2 2 4 6 8 Yes -4++ Noarrow_forwardPractice k Help ises A 96 Anewer The probability that you get a sum of at least 10 is Determine the number of ways that the specified event can occur when two number cubes are rolled. 1. Getting a sum of 9 or 10 3. Getting a sum less than 5 2. Getting a sum of 6 or 7 4. Getting a sum that is odd Tell whether you would use the addition principle or the multiplication principle to determine the total number of possible outcomes for the situation described. 5. Rolling three number cubes 6. Getting a sum of 10 or 12 after rolling three number cubes A set of playing cards contains four groups of cards designated by color (black, red, yellow, and green) with cards numbered from 1 to 14 in each group. Determine the number of ways that the specified event can occur when a card is drawn from the set. 7. Drawing a 13 or 14 9. Drawing a number less than 4 8. Drawing a yellow or green card 10. Drawing a black, red, or green car The spinner is divided into equal parts. Find the specified…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY